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Abstract— This paper examines the problem of symbol timing
recovery and decoding in turbo-coded systems. The large coding
gain of Turbo-codes enables reliable communications at very low
signal-to-noise ratio (SNR). However, the application of turbo
coding exacerbates the problem of timing recovery due to its very
low operating SNRs. Therefore we propose a new concept: ‘a-
priori probability aided’ symbol timing recovery, which is suited
to coding systems employing iterative soft-in/soft-out (SISO)
decoding such as Turbo Codes, where the log-likelihood ratio
obtained from a Maximum A Posteriori (MAP) decoder (as used
in turbo-decoding) is used to aid estimation in an iterative syn-
chroniser/decoder. This method jointly solves the timing recovery
and decoding problem and the synchroniser has effectively no
acquisition period. We illustrate this in detail in a turbo-coded
BPSK system on AWGN channel. We analyse the performance of
the estimator in terms of the mean and the variance of the timing
estimate, and demonstrate a substantial performance advantage
over conventional non-data-aided (NDA) method. It is also shown
that this method can approach the performance of Data-Aided
(DA) method without using additional pilot symbols.

Index Terms— a priori information, timing offset, turbo codes,
S-curve, AWGN channel

I. INTORDUCTION

TURBO-CODES [1] are by now well known as very
powerful error control codes, which are capable of

closely approaching the Shannon bound on channel capacity.
However, the impressive performance of turbo codes always
implicitly assumes perfect synchronisation, which is unreal-
istic. In practical communication systems performance may
often be limited not so much by errors due to noise as by
the problem of synchronisation [2]. Two main synchronisation
parameters in most communication systems are carrier phase
and symbol timing. Precise knowledge of the received carrier
phase and accurate symbol timing are necessary for reliable
detection in communication systems. In [3], we have addressed
the carrier phase recovery problem assuming perfectly known
symbol timing in turbo coded systems. In this paper, we will
investigate the problem of symbol timing recovery assuming
perfectly known carrier phase.

Timing recovery is one of the most critical synchronisation
functions that are performed at the receiver of a digital com-
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munication system. Sampling at optimum instants to ensure a
minimum intersymbol interference (ISI) is crucial to achieving
good overall performance. The application of coding, and
especially turbo-coding, tends to exacerbate the symbol timing
recovery problem, precisely because of its low operating SNR.
Moreover, the turbo-coded system is rather sensitive to a
timing offset, and this is in effect because the timing offset
reduces the signal power and simultaneously increases the
variance of the ISI at the output of the matched filter and thus
reduces the effective SNR significantly. Conventional non-
data-aided (NDA) timing recovery techniques are dependent
on SNR: coded systems operate at a lower bit energy to noise
density ratio than uncoded, by virtue of their coding gain,
and further at a lower still SNR, because of their redundancy.
Data-aided (DA) or decision-directed (DD) timing recovery,
on the other hand, requires either long preambles, which
increase redundancy, or access to decoding decisions, which
are generally not available until synchronisation has been
performed.

In the literature, some effort has been devoted to the
development of efficient symbol timing recovery methods
suited to turbo-coded systems. Lu et al. [4] present a timing
offset tracking algorithm in turbo-coded modulation systems,
but they use the conventional early-late gate algorithm [5]
without any help from the turbo decoder. Mielczarek et al.
carried out a programme of research on this issue. Their
most recent work [6] proposes a sort of soft bit combination
timing recovery approach taking account of the influence of
timing offset on turbo decoding. In this approach, a coarse
ML NDA detector selects two sets of samples which lie
closest to the optimum sampling point from four samples
per symbol, and sends to the decoding process. They are
decoded for enough iterations and combined to create final
soft bit values used in thresholding device. Another work of
Mielczarek [7] obtains the timing error according to a look-
up table, which links the timing errors to the difference of
the average squared Log-Likelihood Ratio (LLR)(output from
turbo decoding) between two samples taken equally separated
from the optimum sampling point. Both approaches employ
two turbo decoders and result in a high complexity.

In this paper, we describe an alternative concept, which we
will call a priori probability aided (APPA) timing recovery,
which fits particularly well with the iterative turbo-decoder,
although it would also be applicable with other types of code.
It can be understood as a generalisation of DA and NDA
synchronisation, since it reduces to the former when perfect
data knowledge is available, and to the latter when there is no
a priori knowledge of the data. In place of hard data decisions,
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as in the DD case, it uses the a priori probability (APP)
information obtained from the decoder, which carries the
probability information of the transmitted data from the output
of a SISO decoder, such as the MAP decoder used for turbo-
codes. Note that the term ‘a priori’ is used because its well-
established use in turbo decoding and because the information
is a priori as far as the synchronisation is concerned; in
fact the information is a priori only in respect of the next
iteration of the decoder - it is a posteriori in relation to the
original data. The timing estimation and the turbo decoding
are performed jointly once per decoding iteration. The output
timing estimate and the extrinsic information are then used in
the next iteration. Applied iteratively, this technique allows
successive refinement of the symbol timing estimate, until
the joint decoder/synchroniser converges on the (hopefully)
correct data and timing estimate. In this way, this iterative
timing recovery technique exploits the power of turbo codes
to enable reliable operation at very low SNR. There is no
need for transmission of additional pilot symbols, and hence
it also saves bandwidth. A similar proposal is made in [8],
where the timing recovery and equalisation are implemented
iteratively while interacting with the decoder. But this work is
for the low-density parity-check (LDPC) codes assuming that
the timing error may be modelled by a Markov chain.

The proposed symbol timing estimation method is based on
the Maximum Likelihood algorithm [9] with low complexity.
The most likely estimate of the timing error maximises the
log-likelihood function, and corresponds to the zero crossing
of the negative slope of the S-curve [10], [11] (which is defined
as the derivative of the log-likelihood function). Accordingly,
we obtain the maximum estimate directly from the S-curve
without an acquisition procedure. In addition, we obtain this
zero crossing by linear interpolation based on four samples
at -T/2, -T/6, T/6, T/2 on the S-curve, without producing the
whole S-curve, and hence significantly reduce the computa-
tional complexity.

We address the symbol timing recovery in turbo-coded
BPSK system on the AWGN channel in this paper and initially
assume the perfectly known carrier phase (set as 0). In the next
section, we derive the log-likelihood function for the NDA,
APPA and DA methods, and then describe how to obtain
the maximum likelihood estimate with reduced complexity.
The third section describes the receiver structure. While in
the fourth section we give simulation results and compare
the APPA method with the other two conventional methods.
Finally, the last section gives our conclusions.

II. APPA SYMBOL TIMING ESTIMATOR

A. System Model

In this paper, we consider a turbo-coded BPSK system. The
turbo encoder is built using a parallel concatenation of two
identical recursive systematic convolutional (RSC) codes with
generators [G1, G2] linked together by an interleaver with size
N , where G1 and G2 are the polynomials of the feedback and
output connectivities of the RSC encoders. Both RSC encoders
use the same information data bits but according to a different
sequence due to the presence of the interleaver. The parity bits

out of the two encoders are properly punctured to achieve the
desired coding rate. The coded streams are modulated to BPSK
symbols and then pulse shaped using a band-limited signal
pulse g(t) and the resulting baseband signal is transmitted
over an AWGN channel.

The input signal to the channel can be expressed in complex
baseband form as

x(t) =
∑

k

dkg(t − kT ) (1)

where {dk} is a sequence of random binary data symbols
which take on the values ±1 with equal probability. 1/T is
the symbol rate and g(t) is the Nyquist signalling pulse shape.

The received signal is then sampled and filtered by a
matched filter. To sample at the optimum instants, the receiver
must know not only the frequency 1/T at which the outputs
of the matched filters or correlators are sampled, but also
where to take the samples within each symbol interval, which
is called timing offset and denoted as τ . In an analogue
receiver the solution of this problem is to control the sampling
instant kT + τ of the received signal [12], [13]. In truly
digital timing recovery, sampling is done using a fixed clock
at t = kTs possibly incommensurate with the symbol rate
1/T . The shifted samples must be obtained solely from those
asynchronous samples taken at rate 1/Ts rather than shifting
a physical clock. Its distinct feature is that the clock is not
adjusted in any way; proper timing must be established from
signal samples themselves. If the Nyquist sampling criterion
is met, the samples will contain sufficient information to allow
reconstruction of the underlying signal at the optimum strobe
point through interpolation. In this paper, we consider a fully
digital implementation. For simplicity, we assume the sampler
at receiver operates at the same rate 1/T as at the transmitter.
Then the remained problem is to determine the correct timing
offset within a T -second interval [−T/2, T/2] [10].

Assuming perfect carrier recovery, the received complex
baseband signal in the AWGN channel can be expressed as

r(t) = x(t + τ) + n(t) (2)

where n(t) is white Gaussian noise with power σ2, and τ is the
unknown but deterministic timing offset, which implies that
Maximum Likelihood Estimation (MLE) is the most suitable
estimation method [9]. In addition, we assume the timing
offset remains constant through the coding block. Since in
the majority of the existing applications the block length is
much shorter than the timing offset fluctuation period, this
assumption does not introduce significant penalty.

The key idea in developing an efficient symbol timing
recovery scheme in a turbo-coded system is to take advantage
of the iterative structure of the turbo decoding by interacting
with the decoder [14]. In the following, we will show how to
implement timing estimation with help from the decoder.

B. Derivation of the Log-Likelihood Function

The approaches discussed here are based on the maximum-
likelihood strategy for estimation of the parameter τ in
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(2) based on observations of the received signal. The log-
likelihood function (LLF) is

Λ(τ) =
1
σ2

∫ NT

0

r(t)x(t + τ)dt (3)

where N is the observation interval, which is the same as the
number of data bits in one block of turbo codes. Note that
the extrinsic information obtained from the Turbo decoder is
only available for the information data bits, hence we only
consider the data bits in the calculation of the LLF. Since the
turbo decoder processes data blocks, taking a block of data for
every synchronisation observation will not introduce further
delay.

In term of the received signal, we can write the LLF of DA
estimation as

Λda(d̂, τ) =
1
σ2

∫ NT

0

r(t)
N−1∑
k=0

d̂kg(t − kT + τ)dt

=
N−1∑
k=0

d̂kqk(τ) (4)

where d̂k is the known data or the data decision made in
the receiver and qk(τ) is given by

qk(τ) =
1
σ2

∫ NT

0

r(t)g(t − kT + τ)dt. (5)

Considering the transmitted data as a nuisance parameter,
the likelihood function in NDA timing estimation can be
obtained by averaging the likelihood function in the DA
estimation over the PDF of the information symbols with
distribution pr(dk = ±1) = 1/2 for the baseband binary
signal. Hence the LLF of the NDA method is

Λnda(τ) = ln
N−1∏
k=0

[
1
2

exp (qk(τ)) +
1
2

exp (−qk(τ))
]

=
N−1∑
k=0

ln cosh (qk(τ)) . (6)

In this paper, the crucial point is how to take advan-
tage of the structure of the turbo decoder in a turbo-coded
system. Notice the most significant feature of turbo-codes
is the iterative decoding, which uses two SISO component
decoders for the two component encoders. The soft output
(extrinsic information) from the first decoder will be used
as the a priori information in the second decoder, while the
extrinsic information generated from the second decoder will
be used as the a priori information in the first decoder in
the next iteration, and so on. In this way, each decoder takes
advantage of the extrinsic information produced by the other
decoder in the previous step. The a priori information is the
estimation of the transmitted data made by the component
turbo decoder, meaning how likely the data is ‘1’ or ‘-1’,
expressed mathematically as [15]

L(k) = log
(

p(dk = 1)
p(dk = −1)

)
. (7)

The more positive this value, the more likely the data is to
be ‘1’, on the other hand, the more negative this value, the

more likely it is to be ‘-1’. The absolute magnitude of L(k)
is the measure of the reliability of the estimation: the larger,
the higher the probability of the data bit being 1, when L(k)
is positive; or -1, when it is negative. However, when |L(k)|
reduces to 0, that means the decoder is uncertain what the data
is (i.e. p(dk = ±1) = 1/2). This can be directly used for the
distribution of the data and used in the synchroniser. In binary
transmission, p(dk = 1)+p(dk = −1) = 1, and hence we can
compute the symbol probabilities [15] from L(k) by

p(dk = 1) =
exp(L(k))

1 + exp(L(k))

p(dk = −1) =
1

1 + exp(L(k))
. (8)

Averaging the likelihood function in the DA estimator (the
LLF is given in (4)) over all possible transmitted symbols:
S0 = 1 and S1 = −1 in BPSK, using the probability
information given in (8), we get the LLF of the timing
estimator aided by the a priori information

Λappa(τ) =
N−1∑
k=0

log[p(dk = S0) exp (qk(τ)) +

p(dk = S1) exp (−qk(τ))]. (9)

As a practical implementation consideration, we restrict the
integration in qk(τ) to [−aT, aT ] [16] and denote it as

fk(τ) =
1
σ2

∫ aT

−aT

r(t + kT )g(t + τ)dt (10)

where a is a parameter to determine the range of the integral:
the larger the more accurate (except at the ends). For most
purposes a = 2 or 3 will probably adequate. In our study we
take a value of a = 4. Then the LLF becomes

Λappa(τ) =
N−1∑
k=0

log[p(dk = 1) exp(fk(τ)) +

p(dk = −1) exp(−fk(τ))]. (11)

Inserting (8) into (11), after some algebra, we get

Λl
appa(τ) =

N−1∑
k=0

log
[
cosh

(
fk(τ) +

Ll(k)
2

)
sech

Ll(k)
2

]
.

(12)
We notice that through this modified LLF, the a priori

information L(k) is embedded into the maximum likelihood
timing estimation. We call it a priori probability aided (APPA)
timing estimation. Note that the LLF for the APPA timing
estimator is now a function of the extrinsic information
calculated iteratively in the turbo decoding. We use l to
indicate the number of decoding iterations, showing that the
LLF of APPA estimation is updated iteratively along with the
turbo decoding. Consequently, it will yield an updated timing
estimate for each decoding iteration. The new timing estimate
is used to correct the timing offset of the data sequence fed
to the decoder, which will generate new extrinsic information.
Based on this new extrinsic information, timing estimation
is repeated, generating new timing estimates that are more
accurate than the originals. Repeating timing estimation and
decoding jointly, the timing estimation is performed multiple
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times while interacting with the decoder. The hope is that each
set of extrinsic information will improve the timing estimates,
which will in turn improve the next set of data samples fed into
the next decoding iteration, so that eventually the algorithm
will converge to the optimal solution of the joint symbol timing
estimation and turbo decoding.

As already mentioned above, the extrinsic information is
the estimate of the transmitted data bit made by the pre-
vious decoding attempt. The absolute value of the extrinsic
information |L(k)| represents a sort of reliability metric, the
larger it is the more reliable the estimate is, and the more the
two probabilities are unbalanced. When it is large enough,
one probability will be 1, the other 0, that is the decoder
is very certain about the decision, and the APPA estimator
resembles the case of the DA method. On the other hand,
when the extrinsic information is equal to 0, the decoder
makes an estimate with p(dk = 1) = p(dk = −1) =
1/2, which is exactly the same as the NDA case. However,
this case will happen only at the first iteration, when no
extrinsic information is available. Clearly, the APPA method
lies between the DA and the NDA methods in terms of how
much information about the transmitted data is available: with
large |L(k)|, the APPA method approaches the DA method;
while with small |L(k)|, it tends to NDA. As long as iterative
decoding proceeds, the reliability of decoding improves, and
the absolute values |L(k)| increase. The iteratively improved
extrinsic information will improve the proposed APPA method
iteration by iteration to match the DA method. This will be
verified by the simulation results in the following.

C. Maximum Likelihood Timing Estimate

The proposed timing recovery technique is based on choos-
ing the value of τ̂ to maximise the LLF, given in (12) for
the APPA method. Differentiating (12) with respect to τ , we
obtain the necessary condition for maximising the LLF

Λl
appa

′
(τ)

=
N−1∑
k=0

1
σ2

∫ aT

−aT

r(t + kT )g′(t + τ)dt ·

tanh

(
Ll(k)

2
+

1
σ2

∫ aT

−aT

r(t + kT )g(t + τ)dt

)

=
N−1∑
k=0

f ′
k(τ) tanh

(
Ll(k)

2
+ fk(τ)

)
= 0 (13)

where

f ′
k(τ) =

1
σ2

∫ aT

−aT

r(t + kT )g′(t + τ)dt. (14)

f ′
k(τ) can be interpreted as the output from filter with

impulse response g ′(t+ τ), which is the derivative of g(t+ τ)
with respect to τ .

However, observing the highly complicated function (13), it
involves too much computation to compute the exact estimate
from (13) directly. To resolve this problem, we turn to the use
of S-curve.

D. S-curves

The S-curve [10] is defined as the derivative of the LLF
(12) with respect to τ , and hence the S-curve for the APPA
method is given by (13). It is not difficult to deduce that the
zero crossing of the negative slope of the S-curve maximises
the LLF and it is the desired timing estimate. The S-curve can
be regarded as a discriminator characteristic for measuring
the parameter τ [10]. The estimation accuracy is enhanced by
increasing the slope at the zero crossing.

Fig. 1(a) shows the S-curves obtained by simulation using
the DA, NDA and APPA timing estimators in turbo-coded
BPSK system. An NDA method can be implemented by setting
the a priori information as 0 in the APPA estimator. And in the
DA method we assume all the transmitted data is known. This
is an ideal but impractical condition used only for comparison.
Moreover, for the purpose of comparison, these S-curves are
generated for a particular data stream in the presence of a
particular noise sequence with Eb/N0 = 2 dB. The timing
offset is assumed to be 0.0. And the signal is sampled twice per
symbol. Observe how the slope of the NDA curve is less than
the DA, showing that it is more sensitive to noise, and indeed
there is an additional estimation error in it. The APPA curves
lie between the NDA and the DA. Its result at the 3rd iteration
shows an obvious improvement over the second iteration, and
it is nearly identical to the DA method. It will tend to DA as
more iterations are completed, when the decoding is reliable
enough. That is, the accuracy of the timing estimation provided
by the APPA improves over the NDA and approaches the DA
iteration by iteration.

When the system has a non-zero fixed timing offset, we have
noted that the zero crossing on the negative slope of the S-
curve should be around the true timing offset. This is demon-
strated by the simulation results shown in Fig. 1(b). These
S-curves are obtained by simulation using the APPA method
for the same turbo-coded BPSK system with Eb/N0 = 2 dB
and timing offset τ = 0.2T . Different S-curves correspond to
different number of iterations. Obviously, the zero crossings
on their negative slope are close to 0.2T as expected, and
the slope at the crossing point increases with more decoding
iterations, implying that the accuracy of the timing estimation
is improved by performing more iterations.

E. Evaluation of Timing Estimate using Linear Interpolation
Algorithm

Now the remaining problem is to obtain the ML timing
estimate with reasonable complexity. The above analysis of
the S-curve suggests that the ML timing estimate can be found
from the zero crossing on the negative slope of the S-curve.
But it is highly wasteful if we generate the whole S-curve in
order to obtain the estimate, since only one sample is desired
(the timing offset estimate). A more efficient method is to use
a linear interpolation algorithm [11] as depicted in Fig. 2.

This algorithm only calculates four samples at
{−T/2,−T/6, T/6, T/2} on the S-curve and then chooses
two points from these four samples which satisfy the
following criterion

S(τi) > 0 and S(τi) · S(τi+1) < 0 (15)
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Fig. 1. Illustrating S-curves for Turbo-coded BPSK System.
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Fig. 2. Four Samples at {−T/2,−T/6, T/6, T/2} on the S-curve Used
by the Linear Interpolation Algorithm to Determine the ML Timing Estimate

where S(τi) denotes a point on the S-curve with τ = τi. Once
τi is chosen, the ML estimate τ̂ML can be found using linear
interpolation

τ̂ML =
τiS(τi+1) − τi+1S(τi)

S(τi+1) − S(τi)
. (16)

Noting that the S-curve given by (13) is the sum of the
derivative LLF for each individual symbol, thus these four
points on the S-curve can be computed for every symbol and
summed over one block. The computation of the whole S-
curve and the evaluation of the highly complicated equation
(13) are avoided. In addition, we pre-calculated the impulse
response g(t+ τ) and g ′(t+ τ) for the timing offset values of
{τ = −T/2,−T/6, T/6, T/2} and stored them into look-up
tables to save computational burden.

In summary, the iterative APPA timing estimator works as
follows. For every block, at iteration number l = 0, timing
estimate τ̂0 and extinsic information L0(k) are initialised as
0. At the l-th iteration, l ≥ 1, the derivative of the LLF for
four delay values of {−T/2,−T/6, T/6, T/2} is computed
for each received symbol according to (13) using the extrinsic
information obtained at the (l − 1)-th turbo decoding iteration
and the corresponding g(t+τ) and g ′(t+τ) are obtained from
the look-up table. For each delay value, the derivatives of the
LLF are summed over one block and this gives the four points
on the S-curve for this iteration of this block. Using the linear
interpolation algorithm, we obtain the l-th timing estimate,
which is used to correct the timing offset in the (l + 1)-th
iteration.

III. RECEIVER STRUCTURE

The block diagram of the receiver using the APPA symbol
timing recovery in a turbo coding system is given in Fig.
3. Every component in the receiver operates once for each
iteration of every data block. The received signal is fed
simultaneously to the matched filter and the timing estimator.
The matched filter g(−t) shapes the overall baseband im-
pulse response to satisfy the Nyquist criterion; the function
of the interpolation embedded in the matched filter is to
generate symbol synchronised samples suitable for detection.
For the first iteration, the timing corrector does not make
any adjustment, while the turbo-decoder does not provide any
information to the synchroniser and the timing estimator is
in fact making the estimation using the NDA method. For
subsequent iterations, the timing estimator obtains more and
more reliable a priori information from the decoder and as
we will show in the following, this results in a more and
more accurate estimate which will be used in the corrector
to make adjustment on the data sequence fed to the decoder.
This adjustment undoubtedly improves the decoding, which in
turn will improve the synchronisation. As long as it proceeds,
the reliability of the extrinsic information and the accuracy of
the symbol timing estimate improves, until the synchronisation
and the decoding converge to correct values after several
iterations. Remember, soft demodulation is used before the
corrected sequence is fed to the decoder. It is worth mentioning
that the system discussed here is a fully digital implemen-
tation. Sampling is done using a fixed clock, and thus it is
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impossible to adjust the sampling clock. All timing adjustment
must be performed on the signal. In this research, the timing
adjustment is implemented by an interpolation filter which is
merged with the matched filter to ensure that the interpolator
causes negligible distortion in the data processing. As shown
in Fig. 3, gτ (−t) is the matched filter in the receiver with
varying filter coefficients for different timing delay τ . We pre-
calculate these coefficients and store them in look-up tables to
reduce the computational burden.

IV. PERFORMANCE

The performance of this algorithm is evaluated in a turbo-
coded BPSK system over AWGN channel. With the purpose
of comparison, we also implemented NDA and DA timing
recovery methods. The NDA method is implemented simply
by setting the a priori information in the APPA method as 0.
And we assume that all the transmitted data is known in the
DA method, which is an ideal but unpractical condition used
only for comparison.

The 16-state, rate 1/2 turbo code with generator polynomial
G = {023, 037}8, and length 1024-bit S-random interleaver
with an S-parameter of s = 19 is used in the simulation. We
assume that the timing offset τ remains constant throughout
the block and changes only between the blocks. The signalling
pulse shape filter g(t) is chosen as a root raised cosine pulse
with roll-off factor 1. The signal is sampled twice per symbol
(for 100% roll-off filtering this is the minimum required by
the sampling theorem, and implies that no information is lost
in sampling).

In the following, the performance of the timing recovery
algorithm will be assessed through numerical evaluation of
the mean of the timing estimate and the variance of the
timing estimator. We will also investigate the overall BER
performance versus different timing offsets and the energy per
bit to noise spectral density ratio Eb/N0. All the results are
obtained by Monte Carlo simulation for 1000 blocks.

A. Compared with the DA and NDA Methods

The difference between these three methods have been
demonstrated by their S-curves shown in Fig.1. It can also
be identified easily from Fig.4, which illustrates the mean
(Fig.4(a)) and the variance (Fig. 4(b)) of the timing estimation
for every joint synchronisation and decoding iteration. Fig.
4(a) depicts the mean of the timing estimate for a fixed
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and Timing Offset = 0.2T, BPSK Modulation.

Fig. 4. Comparison with the NDA and DA methods.

timing offset 0.2T of the NDA, APPA and DA methods for
different iterations with Eb/N0 = 1.5 dB. The number of
iterations did not make any difference to the mean estimate
of the NDA and DA methods and their curves appear as two
straight lines parallel to the x-axis. The curve for APPA lies
between them, as we expect. At the first iteration it equals
to the NDA method, as no a priori information is available.
As more iterations are completed, the reliability of the a
priori information improves, and the estimate generated from
the APPA approaches the results obtained from DA, and is
superior to NDA. By the 5th iteration (at this Eb/N0 value),
the APPA method matches the DA method.

The same is true for the variance of the timing estimator (i.e.
var{τ̂ −τ}), as shown in Fig. 4(b). That is the APPA provides
a performance starting with that of the NDA and approaching
the DA with enough synchronisation/decoding iterations.
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B. Variance of Timing Estimator Compared with MCRB

The performance of the APPA timing estimator is also
compared to the Modified Cramer-Raw Bound (MCRB) for
any unbiased estimator [17]

MCRB(τ) =
T 2

8π2ξN(Es/N0)
=

T 2

4π2ξN(Eb/N0)
(17)

where N is the number of symbols in the data block and ξ
the normalised mean square bandwidth of the pulse spectrum.
For the root-raised cosine filter used in this paper, ξ is given
by [17]

ξ =
1
12

+ β2

(
1
4
− 2

π2

)
. (18)

Note that for 1/2 rate coding BPSK system Es = Eb/2.
Fig. 5 shows the variance of the timing estimator for the

NDA and the APPA with the 2nd, 3rd and 6th iterations. It
is easy to see that the variance curve for the traditional NDA
is much poorer than that of the APPA. The variance of the
APPA timing estimator improves and tends to the MCRB as
more iterations are completed. With 6 iterations, it reaches a
performance floor at some Eb/N0 value. However, it is noted
that the APPA method does not achieves the MCRB although
it matches the performance of the DA method after several
iterations as shown in Fig. 4(b). This may be caused by the
linear interpolation algorithm used to find the ML estimate
or the interpolation algorithm used for the timing correction.
It is also noted that the curve with 6 iterations is inferior
to that with 2 iterations in the region of Eb/N0 < 1 dB.
This is because that at such low Eb/N0, the decoding is not
reliable even with ideal synchronisation. With more decoding
iterations, only a proportion of blocks are improved. The
same happens to the timing estimates generated from these
blocks, relying on the extrinsic information obtained from the
turbo decoder. This leads to more variable estimates, which
consequently results in the increase of the variance. If the
decoding converges with enough iterations, when all the blocks
have the same performance, then the variable range of timing
estimates, or equivalently the variance will reduce accordingly.

C. BER Performance

In Fig. 6, we show the overall BER performance of a
turbo-coded BPSK system against symbol timing offset using
the APPA symbol timing recovery approach. These curves
were generated by computer simulation with four synchronisa-
tion/decoding iterations. Two curves correspond to two E b/N0

values: 1.25 dB and 1.5 dB. It is shown that the overall BER
performance is kept nearly unchanged up to 0.45T, meaning
that the system can provide reliable performance in the pres-
ence of a timing offset in the region of [−0.45T, 0.45T ]. Note
that random variations are visible on the curve of 1.25 dB as a
result of the Monte Carlo simulation used to obtain the results.
These could be reduced by increasing the number of random
trials.

The overall BER performance versus Eb/N0 values is
shown in Fig. 7 with a fixed timing offset 0.2T in comparison
with the ideal curve and the BER degradation curve resulting
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Fig. 5. Variance of Timing Estimation versus Eb/N0 using NDA and APPA
Timing Estimation Methods Compared with the MCRB, Timing Offset = 0.2T,
BPSK Modulation.

from this timing offset without performing any timing recov-
ery. It is shown that the APPA curve after six iterations exhibits
a negligible performance degradation with respect to that with
ideal synchronisation. Although the BER performance of the
conventional NDA method has not been included in this figure,
it has been shown in Mielczarek’s work [6] that the ML
symbol timing recovery algorithm reaches a performance floor
in a turbo-coded system and the performance is much worse
than their proposed method, which is about 0.1-0.2 dB away
from the ideal performance curve.

V. CONCLUSION

In this paper, we have presented the APPA symbol tim-
ing recovery algorithm, which is based on the Maximum
Likelihood Estimation strategy with the aid of the extrinsic
information generated in the turbo decoding iteration. This
information is used to improve the iterative decoding as well
as the synchronisation through a joint log-likelihood function.
This method has two distinctive characteristics in comparison
with the traditional timing synchronisation methods, NDA and
DA: firstly it operates iteratively; secondly, it is combined
with the turbo decoding through iteratively using the extrinsic
information generated by the turbo decoder, rather than prior
to the decoder separately like in the NDA and DA methods.
The most likely estimate is obtained by working out the zero
crossing of the negative slope of the S-curve using a linear
interpolation algorithm based on four samples taken on the
S-curve without the necessity to generate the whole S-curve,
and thus significantly reduce the computational load.

The system performance was assessed through the mean
of the timing estimate, the variance of the timing estimation
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and the overall BER performance. It was shown by these
simulation results that the APPA algorithm provides very good
system performance with a great improvement over that of the
NDA, and approaches the DA without the need for employing
pilot symbols.

Iterative joint decoding and synchronisation using APPA
estimation can be applied in many other cases. Most straight-
forwardly it can be used with other forms of modulation, such
as QPSK and 8PSK, or in a coded system with unknown
carrier phase and symbol timing offset. The research results
of these applications will be reported in future work.
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