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Analysis of the Normalized LMS Optimum
Solution in the Context of Channel Equalization

Levy Boccato, Rafael Ferrari, Romis Attux

Abstract—Albeit being presented as an alternative tothe ~ In this context, given that the MSE criterion
classical least-mean-square (LMS) algorithm, the normal- calls for knowledge of statistical expectations of
ized LMS (NLMS) actually deals with a modified mean certain terms related to information signals, the
squared error (MSE) cost function, so that the expected optimization process is carried out according to
optimum solution may differ from the Wiener solution. two main possibilities: 1) the use of instantaneous
In this work, we perform an investigation concerning the s p © )R :
question as to whether such difference may arise in the €Stimates Ihstegd of statistical expectations ahd 2)
context of the channel equalization problem by considering the approximation of the MSE by means of time
a representative set of transmitted signal modulations, averages. The first of these alternatives engenders
channel models and signal-to-noise ratio (SNR) conditions the least-mean-square (LMS) algorithm, whereas
Additionally, we analyze the influence of the potential e gacond s the basis of the recursive least squares
deviation from the optimal solution on the performance RLS) algorithm 1
of the equalizer. ( ) a_gorl m [1]. ) .

Despite the importance of the RLS algorithm, it
is possible to consider the LMS as the canonical
adaptive algorithm within the MSE-based frame-

Index Terms—Adaptive filtering, Channel equalization,
Normalized LMS

. INTRODUCTION work. The algorithm has a very simple and elegant
HE problem of adaptive filtering comprisesfa xpression:
three main choices: a) that of an adequate  w(n+ 1) = w(n) + e’ (m)x(n). (1)

filter structure; b) that of a statistical criterion that
expresses in mathematical terms what is expect¥ , I
from the filtering process; c) that of an optimizatioflPut vector of a FIR filter of ordefs, e*(n) is the
method that estimate the system parameters accdf@1PIex conjugate oé(n), the difference between
ing to the chosen criterion. It is possible to stafé reference signal(n) and the filter outpuy(n) =
that the most classical setup is that of a linear finit® n)x(n), ju is a step-size parameter andn) is
impulse response (FIR) filter whose adaptation € filter coefficient vector at instant _
based on the minimum mean squared error (MSE)The_practlcal use of _the LMS al_gorlthm raises
criterion and carried out with the aid of gradient crucial tradeoff regarding the choice of the step-
based algorithms [1]. size parametey in terms of convergence rate and
Undoubtedly, the problem of channel equalizatiofisadjustment. The normalized LMS algorithm [1],
represents an emblematic application of the adaptifd (NLMS) is an attempt to find a compromise
filtering framework, in which a carefully designed?y means of the adoption of a variable step-size
filter (termed equalizer) is employed to cancel of@rameter. This is done by introducing the term
the noxious effects of a certain communicatiol ()X(n) as a regulator, as it is possible to show
channel, thereby, in a certain sense, inverting it. THeat this term is crucial to determine the variation
problem is supervised when the equalizer paranf¥-the instantaneous squared error [1], [2]:
ters are modified online with the aid of reference H x
samples taken from the transmitted signal [1]. w(n+1) = w(n)+ e (mx(n). (2)

perex(n) = [z(n)z(n—1) ... z(n—K+1)|"is the
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it is possible that the optimum solution for thishe Wiener solution. Finally, Section IV brings the
modified cost function be different from the Wieneconclusions and perspectives for future works.
solution. In other words, the NLMS may converge to
a coefficient vector that is not the Wiener solution.
This aspect is of paramount importance since

the NLMS algorithm usually is presented as an The main elements involved in the supervised

alternative to the conventional LMS for adaptinghannel equalization problem are depicted in Figure
the filter parameters. However, if these algorithmg

should converge to different solutions, there actually
would be two distinct approaches for the adaptive
filtering problem. In [3], it was demonstrated that

[I. PROBLEM STATEMENT

n(n) a d(n) =s(n-h)

——

the mean behavior of the NLMS converges to theyy e e— PR /mr\y(n) Y
Wiener solution considering white Gaussian input— nm). Hp /> >LM\Z)
signal, which means that the modified optimal so-

lution is almost equivalent to the classical Wiener LT;__Criteriom_, N
solution.

Nevertheless, this result cannot be directly ap- . . o
. . . ) ig. 1. Basic diagram of the supervised channel equalization prob-
plied to the channel equalization problem, since th,.
hypothesis that the input signal is a white process is

not correct here due to the intersymbol interferenceThe transmitted signai(n) is composed of inde-

(IS1). Additionally, depending on the characteristicgendent and identically distributed (i.i.d.) samples
of the channel, the received signal is not adequat@fiflonging to the discrete alphak®associated with
represented as a Gaussian random variable. Ot chosen modulation (e.g., BPSKHQAM). The
aspects regarding the NLMS algorithm, such a®annel transfer functiorf/(z) models the effect
the convergence rate (speed) and the steady-si@wn as intersymbol interference (ISI) [1] and
performance were analyzed in several works [4}{,,) represents an additive white Gaussian noise
[10]. However, these studies generally focused @iith zero mean and variance?. The objective
the system identification task and, in most casgf, channel equalization is to remove as much as
with Gaussian inputs. possible the ISI in an attempt to recovem) or
Therefore, to the best of our knowledge, ag delayed version thereof((» — 3)), reaching the
analysis of the behavior of NLMS — in terms of th@o-called zero-forcing (ZF) condition [1].
expected optimum filter it may obtain — specifically | this work, the equalizer consists of a FIR filter
in the context of digital channel equalization hagitn x coefficients, defined a& = [wy ... wx_1]7,
not been performed yet. In this work, we aim gjhjch shall be adapted with the aid of the LMS
contributing to bridge this gap, giving particulagng the NLMS algorithms. When the channel and
attention to the question as to whether the NLM@e involved signals do not change their properties
aIgorithm can converge .to a solution different frorﬂuring the communication process, by properly se-
the Wiener filter and, in such case, analyze thgcting the value of the step-size in (1), it is expected
adequacy of the obtained filter in performing thgyat the LMS converge to the Wiener solution. On
desired task. Hence, the applicability of the NLMghe other hand, the NLMS algorithm actually deals
in this kind of task will be further clarified. ~ with a modified cost function, so that the optimal
This paper is organized as follows: Section Wo|ytion it may find can, in theory, be different.
describes the main concepts of the channel equalizaThg aspect can be more clearly understood if
tion problem, as well as highlights the expected Sz interpret the NLMS algorithm as an instance

lutions obtained by the LMS and the NLMS. Thenyt the standard LMS applied to modified data. By
Section Il presents the experimental results, COpsarranging the terms in (2), we can write:
sidering a representative set of input modulations,

channels (both FIR and infinite impulse responsg,, | 1) = wn)+ K (d(n) — y(n))* x(n)
(IIR) filters) and noise, and analyzes the behavior of [x(n)|
the NLMS optimum solution when compared with = w(n)+ pe*(n)x(n), 3
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whereé(n) = d(n) — §(n), d(n) = i((z))ﬁ is the where w can be Wiener OF Wmos The term
modified reference signali(n) = w"(n) ||§<Z)|| and f?({j]s(_n - lﬂ)] } is the mean energy of the transmit-
x(n) ea signail.

X(n) = T 1S the modified input S|g_nal. .. In the experiments, we use the Normalized MSE
So, while the LMS seeks the solution that MiNiy e ronce (NMD), given by

mizes E{e(n)e*(n)}, the underlying cost function ’

of NLMS corresponds toE{é(n)é*(n)}. There- NMD = MSE(Wmod) — MSE(Wiiener

fore, there are two potentially distinct optimal MSE(Wyiener) ’

solutions [6]: the conventional Wiener filter, de

(6)

ted _ hich the statistical inf _és a performance metric to compare the solutions,
NOted aSwwiener WNICN USES the Stauistical intor-, ;- represents the percentage of deviation be-

mation of the input autocorrelation matriR, = . .
S tween the MSE values associated wWithener and
E{x(n)x"(n)} and of the cross-correlation vector ener

p:a = E{x(n)d*(n)}, and a modified solution,

which makes use of normalized data and is IV@¥dean distance (NED) between the corresponding

mod-

Additionally, we also assess the normalized Eu-

by: . o
S filter coefficient vectors:
Wmod = Rx 1pxd7 (4) ”W W H
~ _ wiener — Wmod
where R, = BE{x(n)x"(n)} and p. = NED = T (7
E{x(n)d*(n)}.

In this scenario, one may wonder whether the It is impo_rtant to mention that the modified solu-
aforementioned solutions are equivalent or, at leaden (Wmod) IS computed as an average 8f = 50
approximately equal. This is the main aspect {dependent estimates, where each estimate is ob-
be investigated in this work, particularly in thd@inéd via (4) using sample mean approximations
context of of supervised equalization of digitaf’ R« and p.4, considering a set of" = 10000
signals. Even though it is not feasible to computEansmitted symbols. On the other hand, the Wiener
in analytical terms the statistical entities involved ifOIUtION @uiene) is analytically calculated for the
the modified (normalized) solution, we can resort fgPnsidered scenarios.
simple estimates using a sufficiently large number We shall consider two types of channel) &
of samples, since the signals considered in tHi#NiMum-phase FIR system, anid)(an IR system.
work are stationary and ergodic. Hence, the analydige equalization delay was = 0, which repre-
carried out in this work shall be based on a s&gNts an adequate choice for these channels having
of experimental results in different scenarios of tHe View the attainable performance of the Wiener
channel equalization problem. Notwithstanding, B§elution.
considering representative conditions with respectThe input signals considered in this work are
to the input signal, the channel and the noise, Welated to traditional digital modulation schemes,
believe that the obtained results are capable \4Z. BPSK,4-QAM, 8-PSK and16-QAM [11], and

providing a broader view concerning the adequagyesent unitary mean energy (i.€{s*(n)} = 1)
of NLMS for the equalizer design. in order to allow a direct comparison of the results

under the same SNR conditions.
[Il. EXPERIMENTAL RESULTS

In this ;ec;tion, we are.interested in comparing tl}g Minimum-Phase EIR Channel
characteristics and attainable performances associ-
ated with the Wiener solution and with the modified N this scenario, the transfer function of the chan-
solution, defined in (4), which, as discussed i€l is given byH(z) =1+ az™", with 0 < o < 1.
Section 1l, establishes the actual optimum filtddence, the closer is: to unity, the more difficult
that the NLMS algorithm pursues. Hence, we shafi the inversion of the channel when using a FIR
analyze the theoretical MSE value associated wigglualizer, or, in other words, more coefficients are

each solution, defined as [1]: necessary to reach an adequate cancellation of the
channel.
2
MSE(w) = E{|s(n—B)|"} — w"paa For the case in which the equalizer has= 2

—ptw+w'R,w (5) coefficients, we derived the exact expression of
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the modified solution by computing the statistice
expectation considering all the possible receive
signal vectors X(n)) in the absence of noise. In
this case, the modified solution is given by

1
Wmod = { 1334 } . (8)
1—a#
On the other hand, the Wiener solution for the san
scenario corresponds to:
1+a?
Wwiener = { 1+a_'2¢j_a4 ] . (9)
14+a2+at

These expressions shall be useful for the analysis ‘ ‘ ‘ ‘ ‘ ‘ ‘
the results in the sequence of the text. 02 03 04 05 06 07 08 09 1

Figure 2 shows the NMD values as a function o
a in the absence of noise for a BPSK transmittqﬁi’g. 3. Normalized Euclidean distance betwe@fener 2Nt wmog for
signal and for several equalizer lengths. The NEfdveral equalizer lengths considering the FIR channel, no noise and
between the solutions is depicted in Figure 3.  BPSK modulation.

Wmod @Nd Wyiener, it @alSo becomes evident why the
solutions are more similar whem < 1, reaching
equality fora = 0. Hence, we notice a potential
connection between the NED values and the diffi-
culty for inverting the channel.

This connection is also corroborated by analyzing
the impact of the length of the equalizer: for any
value of o, the more coefficients the equalizer has,
the smaller is the difference betweem,.q and
wuienen @nd the better is the approximation of the
channel inverse by means of the equalizer.

The influence of the noise in the NMD and in
the NED is shown on Figures 4 and 5, respectively.
The results were obtained usirlg = 2 and BPSK
modulation, which is the configuration that attained
Fig. 2. Normalized MSE difference betwesniiener and wmoa for  the largest deviation in the previous scenario.
sBerSeLalme(?duuallgfiE;-Iengths considering the FIR channel, no noise andAS we can obse_rve, the NM[_) and_ the I_\IED are

no longer monotonically increasing withas in the

It is possible to notice that there can be a sigloiseless case. As increases, both performance
nificant deviation of MSE and of distance betweemetrics increase until they reach a maximum value
wwiener @aNd Wiog. IN particular, we observe thatand, then, start to decrease @sapproaches unity.
both NMD and NED values increase as the channBhe peaks of NMD and NME, as well the value of
coefficienta is increased. « at which they occur, decrease as the SNR is re-

For K = 2, as a approaches the unity, theduced. Interestingly, the noise significantly reduces
coefficients ofwmeg, given by (8), tend to increasethe difference betweewiener and wiyog When the
in magnitude and, in the limit, diverge. On the othefF condition is harder to attain.
hand, the Wiener solution always preserve a limited Having in view the potential connection between
magnitude for each coefficient, according to (9he difficulty for inverting the channel and the ex-
which explains the behavior of the NED curve ipected differences between,iener aNd wiog, raised
this case. Additionally, based on the expressions aiiring the analysis of the noiseless case, we believe

10°
102 L
101 L
a
= 10°EK=
Z

10—1 L
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that the presence of noise ends up introducing, of « for several modulations in the absence of noise.
a certain sense, a regularization factor in the com-
putation of wy,og, Which avoids the divergence of

the solution fora close to the unity and, ultimately,
makesw,oq more similar to the Wiener solution. 107

10° w

—&—n0 noise
—e—20dB
~&-15dB
102 F |=*=10dB

NMD

‘ ‘ ‘ ‘ ‘ ‘ ‘ Fig. 6. Normalized MSE difference betweeWicner and wmoq for
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 several modulations considering the FIR channel, no noisefand
@ 2.

Fig. 4. Normalized MSE difference betweeicner and wmoqg for
several SNR values considering the FIR chanigk= 2 and BPSK
modulation.

10
100,
10-1 L
a)
]
z
1072 L
gl ——BPSK
103¢,7%
)% --4-QAM
y ~e-8-PSK
-+ 16-QAM
10—4 I I I I I I I I
- 01 02 03 04 05 06 07 08 09 1
—&— 0 noise
—e=20dB «
~e-15dB
—e-10dB . . . .
102 ‘ ‘ ‘ ‘ ‘ ‘ ‘ Fig. 7. Normalized Euclidean distance betwe®Riener aNd Wmod
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 for several modulations considering the FIR channel, no noise and

« K =2.
. emzed Fuctdean e pelvoer s ? The results show that the larger the modulation
modulation. cardinality, the smaller the difference between the
modified and the Wiener solution. In fact, we ver-
Next, we assess the impact of the modulation dfed through experimental simulations thatsifn)
the transmitted signal. We keep the equalizer lendths a uniform distribution, which is equivalent to a
constant and equal t& = 2, which is the worst modulation with infinite cardinality, the difference
case observed in the first experiment. Figures 6 abetween the solutions is negligible, independently
7 show the NMD and NED respectively as functionsf a. The same behavior was observed when the
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distribution of s(n) is Gaussian. Therefore, the disaccordance with the results shown in Figures 4 and
tribution of the transmitted signal has an importaf, since the largest deviation between the solutions
impact on the filter attained by the NLMS. also occurs for intermediate values @f However,

The difference betweemvyicner and wiog also the difference between the curves is smaller for
impacts on the probability of error of the systemlarger equalizer lengths, which is expected because
Figure 8 shows the theoretical probability of errahe deviation between the solutions is smaller in
of the BPSK [12] as a function af for equalizers those conditions, as previously discussed. Addi-
with K = 2, K = 4 and K = 8 coefficients, when tionally, we can observe that the performance gap
the SNR is set t@0 dB. The curves shown in Figureincreases as the SNR is reduced.

9 are obtained when the SNR i dB. Finally, we show in Figure 10 the contours of
the standard and modified MSE surfaces along with
100 SNR = 200 the trajectories associated with the LMS and the

NLMS considering BPSK modulation, SNR @af

dB anda = 0.8, a scenario where a large difference
betweenw g and wyiener IS €Xpected based on the
results obtained so far. The initial condition and the

D adopted step size were equato= [—2; —2]7 and
élo-w w = 0.001, respectively, for both the algorithms.
g
&
1078 S ——
TP Modified MSE ]
- Wwiener MSE k

= Wiod
10720 I I I I I
0.4 0.5 0.6 0.7 0.8 0.9 1
a

Fig. 8. Theoretical probability of error for several equalizer lengtr
considering the FIR channel, BPSK modulation and SNRdB.

SNR = 15dB
T

Fig. 10. Contours of the MSE and modified MSE surfaces consider-
ing the FIR channel witlax = 0.8 and the SNR 020 dB. The X mark
refers towmod, Whereas the circle represents the Wiener solution.

Probability of Error

As expected, the normalization of data in the
NLMS improves the conditioning of the filter input
| | ‘ | ‘ autocorrelation matrix, since the contours of the
04 05 06 07 08 09 1 modified MSE surface are more similar to cir-
: cles, which may accelerate the convergence of a
Fig. 9. Theoretical probability of error for several equalizer Iengthgradlent'based algorithm FOW?‘rdS the optlmum_solu-
considering the FIR channel, BPSK modulation and SNRdB.  tion. However, the normalization has an undesirable
effect: the NLMS may not lead to the Wiener filter,
Note thatw.og provides a worse performances can bee seen by the difference betweggy and
thanwyener fOr intermediate values af, which is in - wyener In Figure 10.
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B. IIR Channel

Now, the transfer function of the channel is give
by H(z) = i, which means that the ZF
condition can be attained through the use of
FIR equalizer with only two coefficientsi{ = 2).
Therefore, having in mind the observations raise
in the previous scenario, it is expected that tt
difference between the Wiener and the modified s
lutions be less pronounced here. Additionally, sinc
the potential difference between them is reduced
the cardinality of the alphabet associated with tt
input modulation increases, we shall concentrate t
analysis on the BPSK modulation.

Figure 11 exhibits the NMD values as a functio

28
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of a considering the SNRs of0 dB and 30 dB,

whereas Figure 12 displays the NED between thedg 12. Normalized Euclidean distance betwa@Rener and wmod
solutions considering the IIR channel and the SNRs16fdB and30 dB.

that the obtained results have confirmed our expecta-
tion with respect to the potential difference between
Wmod aNd wyiener When the equalizer approaches the
ZF condition.

In order to complete our analysis, we shall verify
the behavior of the NLMS algorithm in this sce-
nario. Thus, we show in Figure 13 the contours of
the standard and modified MSE surfaces along with
the trajectories associated with the LMS and the
NLMS considering the SNR of0 dB anda = 0.8,
which was a case with a large difference between
Wmod and wyiener The initial condition and the
adopted step size were equalwo = [1.5; —2.2]"
andy = 0.005, respectively, for both the algorithms.

NMD

| I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

«

Fig. 11. NMD values associated with classical and modified Wiener Similarly to the previous scenario, we can infer
solutions for the IIR channel and the SNRs1ofdB and30 dB.  that the normalization of data contributes to a faster
convergence of a gradient-based algorithm, but, due
It is possible to notice that when the noise powegs the presence of noise, the optimum solution is
is small, wyiener and wnoq are almost identical slightly different than the Wiener filter.
and, consequently, the NMD values are significantly
small. On the other hand, when the SNRILisdB,
the solutions differ in a relatively higher degree,
and the maximum NMD value is close ®@0%. In this work, we investigated the behavior of the
So, differently from the case with the FIR channeNLMS algorithm in terms of the expected optimum
as more noise is present in the received signal, thieer it may obtain in the context of the chan-
optimum solution that the NLMS algorithm shouldhel equalization problem. The analysis considered
converge to becomes more distinct from the Wiendifferent situations regarding the transmitted signal
solution. Notwithstanding, the distances between theodulation, the channel and the noise power, aiming
solutions are quite smaller when compared witht verifying the circumstances that may lead to a
those observed for the FIR channel, which meadsviation from the Wiener solution.

IV. CONCLUSION
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(2]
(3]

3
D Modified MSE

[gul

(4]

(5]

(6]

(7]

Fig. 13. Contours of the MSE and modified MSE surfaces considfg]
ering the IR channel and the SNR o dB. The X mark refers to
wWmod, Whereas the circle represents the Wiener solution.

9]

The obtained results indicate that the optimum
solution found by NLMS can be considerably dif-
ferent when compared with the Wiener solution ifg
certain cases. In particular, the difference between
these solutions tends to be more pronounced when
the equalizer does not have as many coefficients as
needed for a proper inversion of the channel. In sufiil
condition, the optimum equalizer found by NLM
yielded a worse performance in terms of the bit error
probability when compared with the Wiener filter.

On the other hand, as we increase the size of the
input modulation, the difference between the LMS
and NLMS solutions is reduced, reaching negligible
values when the input signal has a continuous
distribution, even when the equalizer is not capable
of perfectly inverting the channel. With respect to
the effect of noise, two different aspects have been
observed: i} for the IIR channel, the presence of
noise may increase the difference betwegpy and
wuwiener, (i) for the FIR channel, the addition of noise
makes the modified solution more similar to th
Wiener solution. As perspective for future works,
theoretical analysis of the NLMS optimum solution
is certainly pertinent.
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