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Analysis of the Normalized LMS Optimum
Solution in the Context of Channel Equalization

Levy Boccato, Rafael Ferrari, Romis Attux

Abstract—Albeit being presented as an alternative to the
classical least-mean-square (LMS) algorithm, the normal-
ized LMS (NLMS) actually deals with a modified mean
squared error (MSE) cost function, so that the expected
optimum solution may differ from the Wiener solution.
In this work, we perform an investigation concerning the
question as to whether such difference may arise in the
context of the channel equalization problem by considering
a representative set of transmitted signal modulations,
channel models and signal-to-noise ratio (SNR) conditions.
Additionally, we analyze the influence of the potential
deviation from the optimal solution on the performance
of the equalizer.

Index Terms—Adaptive filtering, Channel equalization,
Normalized LMS

I. I NTRODUCTION

T HE problem of adaptive filtering comprises
three main choices: a) that of an adequate

filter structure; b) that of a statistical criterion that
expresses in mathematical terms what is expected
from the filtering process; c) that of an optimization
method that estimate the system parameters accord-
ing to the chosen criterion. It is possible to state
that the most classical setup is that of a linear finite
impulse response (FIR) filter whose adaptation is
based on the minimum mean squared error (MSE)
criterion and carried out with the aid of gradient-
based algorithms [1].

Undoubtedly, the problem of channel equalization
represents an emblematic application of the adaptive
filtering framework, in which a carefully designed
filter (termed equalizer) is employed to cancel out
the noxious effects of a certain communication
channel, thereby, in a certain sense, inverting it. The
problem is supervised when the equalizer parame-
ters are modified online with the aid of reference
samples taken from the transmitted signal [1].
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In this context, given that the MSE criterion
calls for knowledge of statistical expectations of
certain terms related to information signals, the
optimization process is carried out according to
two main possibilities: 1) the use of instantaneous
estimates instead of statistical expectations and 2)
the approximation of the MSE by means of time
averages. The first of these alternatives engenders
the least-mean-square (LMS) algorithm, whereas
the second is the basis of the recursive least squares
(RLS) algorithm [1].

Despite the importance of the RLS algorithm, it
is possible to consider the LMS as the canonical
adaptive algorithm within the MSE-based frame-
work. The algorithm has a very simple and elegant
expression:

w(n+ 1) = w(n) + µe∗(n)x(n), (1)

wherex(n) = [x(n)x(n−1) . . . x(n−K+1)]T is the
input vector of a FIR filter of orderK, e∗(n) is the
complex conjugate ofe(n), the difference between
a reference signald(n) and the filter outputy(n) =
wH(n)x(n), µ is a step-size parameter andw(n) is
the filter coefficient vector at instantn.

The practical use of the LMS algorithm raises
a crucial tradeoff regarding the choice of the step-
size parameterµ in terms of convergence rate and
misadjustment. The normalized LMS algorithm [1],
[2] (NLMS) is an attempt to find a compromise
by means of the adoption of a variable step-size
parameter. This is done by introducing the term
xH(n)x(n) as a regulator, as it is possible to show
that this term is crucial to determine the variation
of the instantaneous squared error [1], [2]:

w(n+ 1) = w(n) +
µ

xH(n)x(n)
e∗(n)x(n). (2)

The introduction of the normalization term in (2)
ends up modifying the underlying cost function, so
that the NLMS algorithm is not, in fact, minimizing
the instantaneous squared error, as the LMS. Hence,
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it is possible that the optimum solution for this
modified cost function be different from the Wiener
solution. In other words, the NLMS may converge to
a coefficient vector that is not the Wiener solution.

This aspect is of paramount importance since
the NLMS algorithm usually is presented as an
alternative to the conventional LMS for adapting
the filter parameters. However, if these algorithms
should converge to different solutions, there actually
would be two distinct approaches for the adaptive
filtering problem. In [3], it was demonstrated that
the mean behavior of the NLMS converges to the
Wiener solution considering white Gaussian input
signal, which means that the modified optimal so-
lution is almost equivalent to the classical Wiener
solution.

Nevertheless, this result cannot be directly ap-
plied to the channel equalization problem, since the
hypothesis that the input signal is a white process is
not correct here due to the intersymbol interference
(ISI). Additionally, depending on the characteristics
of the channel, the received signal is not adequately
represented as a Gaussian random variable. Other
aspects regarding the NLMS algorithm, such as
the convergence rate (speed) and the steady-state
performance were analyzed in several works [4]–
[10]. However, these studies generally focused on
the system identification task and, in most cases,
with Gaussian inputs.

Therefore, to the best of our knowledge, an
analysis of the behavior of NLMS – in terms of the
expected optimum filter it may obtain – specifically
in the context of digital channel equalization has
not been performed yet. In this work, we aim at
contributing to bridge this gap, giving particular
attention to the question as to whether the NLMS
algorithm can converge to a solution different from
the Wiener filter and, in such case, analyze the
adequacy of the obtained filter in performing the
desired task. Hence, the applicability of the NLMS
in this kind of task will be further clarified.

This paper is organized as follows: Section II
describes the main concepts of the channel equaliza-
tion problem, as well as highlights the expected so-
lutions obtained by the LMS and the NLMS. Then,
Section III presents the experimental results, con-
sidering a representative set of input modulations,
channels (both FIR and infinite impulse response
(IIR) filters) and noise, and analyzes the behavior of
the NLMS optimum solution when compared with

the Wiener solution. Finally, Section IV brings the
conclusions and perspectives for future works.

II. PROBLEM STATEMENT

The main elements involved in the supervised
channel equalization problem are depicted in Figure
1.

Channel
h(n), H(z)

Equalizer
w

+ � 
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s(n)

�(n)

x(n) y(n)

d(n) = s(n-�)
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�
�

Fig. 1. Basic diagram of the supervised channel equalization prob-
lem.

The transmitted signals(n) is composed of inde-
pendent and identically distributed (i.i.d.) samples
belonging to the discrete alphabetS associated with
the chosen modulation (e.g., BPSK or4-QAM). The
channel transfer functionH(z) models the effect
known as intersymbol interference (ISI) [1] and
η(n) represents an additive white Gaussian noise
with zero mean and varianceσ2

η. The objective
in channel equalization is to remove as much as
possible the ISI in an attempt to recovers(n) or
a delayed version thereof (s(n − β)), reaching the
so-called zero-forcing (ZF) condition [1].

In this work, the equalizer consists of a FIR filter
with K coefficients, defined asw = [w0 . . . wK−1]

T ,
which shall be adapted with the aid of the LMS
and the NLMS algorithms. When the channel and
the involved signals do not change their properties
during the communication process, by properly se-
lecting the value of the step-size in (1), it is expected
that the LMS converge to the Wiener solution. On
the other hand, the NLMS algorithm actually deals
with a modified cost function, so that the optimal
solution it may find can, in theory, be different.

This aspect can be more clearly understood if
we interpret the NLMS algorithm as an instance
of the standard LMS applied to modified data. By
rearranging the terms in (2), we can write:

w(n+ 1) = w(n) +
µ

‖x(n)‖
(d(n)− y(n))∗

x(n)

‖x(n)‖

= w(n) + µẽ∗(n)x̃(n), (3)
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where ẽ(n) = d̃(n) − ỹ(n), d̃(n) = d(n)
‖x(n)‖

is the

modified reference signal,̃y(n) = wH(n) x(n)
‖x(n)‖

and

x̃(n) = x(n)
‖x(n)‖

is the modified input signal.
So, while the LMS seeks the solution that mini-

mizesE{e(n)e∗(n)}, the underlying cost function
of NLMS corresponds toE{ẽ(n)ẽ∗(n)}. There-
fore, there are two potentially distinct optimal
solutions [6]: the conventional Wiener filter, de-
noted aswwiener, which uses the statistical infor-
mation of the input autocorrelation matrixRx =
E{x(n)xH(n)} and of the cross-correlation vector
pxd = E{x(n)d∗(n)}, and a modified solution,
which makes use of normalized data and is given
by:

wmod = R̃−1
x p̃xd, (4)

where R̃x = E{x̃(n)x̃H(n)} and p̃xd =
E{x̃(n)d̃∗(n)}.

In this scenario, one may wonder whether the
aforementioned solutions are equivalent or, at least,
approximately equal. This is the main aspect to
be investigated in this work, particularly in the
context of of supervised equalization of digital
signals. Even though it is not feasible to compute
in analytical terms the statistical entities involved in
the modified (normalized) solution, we can resort to
simple estimates using a sufficiently large number
of samples, since the signals considered in this
work are stationary and ergodic. Hence, the analysis
carried out in this work shall be based on a set
of experimental results in different scenarios of the
channel equalization problem. Notwithstanding, by
considering representative conditions with respect
to the input signal, the channel and the noise, we
believe that the obtained results are capable of
providing a broader view concerning the adequacy
of NLMS for the equalizer design.

III. E XPERIMENTAL RESULTS

In this section, we are interested in comparing the
characteristics and attainable performances associ-
ated with the Wiener solution and with the modified
solution, defined in (4), which, as discussed in
Section II, establishes the actual optimum filter
that the NLMS algorithm pursues. Hence, we shall
analyze the theoretical MSE value associated with
each solution, defined as [1]:

MSE(w) = E{|s(n− β)|2} −wHpxd

−pH
xdw +wHRxw (5)

where w can be wwiener or wmod. The term
E{|s(n− β)|2} is the mean energy of the transmit-
ted signal.

In the experiments, we use the Normalized MSE
Difference (NMD), given by

NMD =
MSE(wmod)− MSE(wwiener)

MSE(wwiener)
, (6)

as a performance metric to compare the solutions,
which represents the percentage of deviation be-
tween the MSE values associated withwwiener and
wmod.

Additionally, we also assess the normalized Eu-
clidean distance (NED) between the corresponding
filter coefficient vectors:

NED =
‖wwiener−wmod‖

‖wwiener‖
. (7)

It is important to mention that the modified solu-
tion (wmod) is computed as an average ofNr = 50
independent estimates, where each estimate is ob-
tained via (4) using sample mean approximations
of R̃x and p̃xd, considering a set ofT = 10000
transmitted symbols. On the other hand, the Wiener
solution (wwiener) is analytically calculated for the
considered scenarios.

We shall consider two types of channel: (i) a
minimum-phase FIR system, and (ii ) an IIR system.
The equalization delay wasβ = 0, which repre-
sents an adequate choice for these channels having
in view the attainable performance of the Wiener
solution.

The input signals considered in this work are
related to traditional digital modulation schemes,
viz., BPSK,4-QAM, 8-PSK and16-QAM [11], and
present unitary mean energy (i.e.,E{s2(n)} = 1)
in order to allow a direct comparison of the results
under the same SNR conditions.

A. Minimum-Phase FIR Channel

In this scenario, the transfer function of the chan-
nel is given byH(z) = 1 + αz−1, with 0 < α < 1.
Hence, the closer isα to unity, the more difficult
is the inversion of the channel when using a FIR
equalizer, or, in other words, more coefficients are
necessary to reach an adequate cancellation of the
channel.

For the case in which the equalizer hasK = 2
coefficients, we derived the exact expression of
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the modified solution by computing the statistical
expectation considering all the possible received
signal vectors (x(n)) in the absence of noise. In
this case, the modified solution is given by

wmod =

[

1
1−α4

−α
1−α4

]

. (8)

On the other hand, the Wiener solution for the same
scenario corresponds to:

wwiener=

[

1+α2

1+α2+α4

−α
1+α2+α4

]

. (9)

These expressions shall be useful for the analysis of
the results in the sequence of the text.

Figure 2 shows the NMD values as a function of
α in the absence of noise for a BPSK transmitted
signal and for several equalizer lengths. The NED
between the solutions is depicted in Figure 3.
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Fig. 2. Normalized MSE difference betweenwwiener andwmod for
several equalizer lengths considering the FIR channel, no noise and
BPSK modulation.

It is possible to notice that there can be a sig-
nificant deviation of MSE and of distance between
wwiener and wmod. In particular, we observe that
both NMD and NED values increase as the channel
coefficientα is increased.

For K = 2, as α approaches the unity, the
coefficients ofwmod, given by (8), tend to increase
in magnitude and, in the limit, diverge. On the other
hand, the Wiener solution always preserve a limited
magnitude for each coefficient, according to (9),
which explains the behavior of the NED curve in
this case. Additionally, based on the expressions of
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Fig. 3. Normalized Euclidean distance betweenwwiener andwmod for
several equalizer lengths considering the FIR channel, no noise and
BPSK modulation.

wmod andwwiener, it also becomes evident why the
solutions are more similar whenα ≪ 1, reaching
equality for α = 0. Hence, we notice a potential
connection between the NED values and the diffi-
culty for inverting the channel.

This connection is also corroborated by analyzing
the impact of the length of the equalizer: for any
value ofα, the more coefficients the equalizer has,
the smaller is the difference betweenwmod and
wwiener, and the better is the approximation of the
channel inverse by means of the equalizer.

The influence of the noise in the NMD and in
the NED is shown on Figures 4 and 5, respectively.
The results were obtained usingK = 2 and BPSK
modulation, which is the configuration that attained
the largest deviation in the previous scenario.

As we can observe, the NMD and the NED are
no longer monotonically increasing withα as in the
noiseless case. Asα increases, both performance
metrics increase until they reach a maximum value
and, then, start to decrease asα approaches unity.
The peaks of NMD and NME, as well the value of
α at which they occur, decrease as the SNR is re-
duced. Interestingly, the noise significantly reduces
the difference betweenwwiener andwmod when the
ZF condition is harder to attain.

Having in view the potential connection between
the difficulty for inverting the channel and the ex-
pected differences betweenwwiener andwmod, raised
during the analysis of the noiseless case, we believe
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that the presence of noise ends up introducing, in
a certain sense, a regularization factor in the com-
putation ofwmod, which avoids the divergence of
the solution forα close to the unity and, ultimately,
makeswmod more similar to the Wiener solution.
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Fig. 4. Normalized MSE difference betweenwwiener andwmod for
several SNR values considering the FIR channel,K = 2 and BPSK
modulation.
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Fig. 5. Normalized Euclidean distance betweenwwiener andwmod for
several SNR values considering the FIR channel,K = 2 and BPSK
modulation.

Next, we assess the impact of the modulation of
the transmitted signal. We keep the equalizer length
constant and equal toK = 2, which is the worst
case observed in the first experiment. Figures 6 and
7 show the NMD and NED respectively as functions

of α for several modulations in the absence of noise.
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Fig. 6. Normalized MSE difference betweenwwiener andwmod for
several modulations considering the FIR channel, no noise andK =

2.
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Fig. 7. Normalized Euclidean distance betweenwwiener and wmod

for several modulations considering the FIR channel, no noise and
K = 2.

The results show that the larger the modulation
cardinality, the smaller the difference between the
modified and the Wiener solution. In fact, we ver-
ified through experimental simulations that ifs(n)
has a uniform distribution, which is equivalent to a
modulation with infinite cardinality, the difference
between the solutions is negligible, independently
of α. The same behavior was observed when the
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distribution ofs(n) is Gaussian. Therefore, the dis-
tribution of the transmitted signal has an important
impact on the filter attained by the NLMS.

The difference betweenwwiener and wmod also
impacts on the probability of error of the system.
Figure 8 shows the theoretical probability of error
of the BPSK [12] as a function ofα for equalizers
with K = 2, K = 4 andK = 8 coefficients, when
the SNR is set to20 dB. The curves shown in Figure
9 are obtained when the SNR is15 dB.
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Fig. 8. Theoretical probability of error for several equalizer lengths
considering the FIR channel, BPSK modulation and SNR= 20dB.
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Fig. 9. Theoretical probability of error for several equalizer lengths
considering the FIR channel, BPSK modulation and SNR= 15dB.

Note that wmod provides a worse performance
thanwwiener for intermediate values ofα, which is in

accordance with the results shown in Figures 4 and
5, since the largest deviation between the solutions
also occurs for intermediate values ofα. However,
the difference between the curves is smaller for
larger equalizer lengths, which is expected because
the deviation between the solutions is smaller in
those conditions, as previously discussed. Addi-
tionally, we can observe that the performance gap
increases as the SNR is reduced.

Finally, we show in Figure 10 the contours of
the standard and modified MSE surfaces along with
the trajectories associated with the LMS and the
NLMS considering BPSK modulation, SNR of20
dB andα = 0.8, a scenario where a large difference
betweenwmod andwwiener is expected based on the
results obtained so far. The initial condition and the
adopted step size were equal tow = [−2;−2]T and
µ = 0.001, respectively, for both the algorithms.

Fig. 10. Contours of the MSE and modified MSE surfaces consider-
ing the FIR channel withα = 0.8 and the SNR of20 dB. The X mark
refers towmod, whereas the circle represents the Wiener solution.

As expected, the normalization of data in the
NLMS improves the conditioning of the filter input
autocorrelation matrix, since the contours of the
modified MSE surface are more similar to cir-
cles, which may accelerate the convergence of a
gradient-based algorithm towards the optimum solu-
tion. However, the normalization has an undesirable
effect: the NLMS may not lead to the Wiener filter,
as can bee seen by the difference betweenwmod and
wwiener in Figure 10.
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B. IIR Channel

Now, the transfer function of the channel is given
by H(z) = 1

1+αz−1 , which means that the ZF
condition can be attained through the use of a
FIR equalizer with only two coefficients (K = 2).
Therefore, having in mind the observations raised
in the previous scenario, it is expected that the
difference between the Wiener and the modified so-
lutions be less pronounced here. Additionally, since
the potential difference between them is reduced as
the cardinality of the alphabet associated with the
input modulation increases, we shall concentrate the
analysis on the BPSK modulation.

Figure 11 exhibits the NMD values as a function
of α considering the SNRs of10 dB and 30 dB,
whereas Figure 12 displays the NED between these
solutions.
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Fig. 11. NMD values associated with classical and modified Wiener
solutions for the IIR channel and the SNRs of10 dB and30 dB.

It is possible to notice that when the noise power
is small, wwiener and wmod are almost identical
and, consequently, the NMD values are significantly
small. On the other hand, when the SNR is10 dB,
the solutions differ in a relatively higher degree,
and the maximum NMD value is close to30%.
So, differently from the case with the FIR channel,
as more noise is present in the received signal, the
optimum solution that the NLMS algorithm should
converge to becomes more distinct from the Wiener
solution. Notwithstanding, the distances between the
solutions are quite smaller when compared with
those observed for the FIR channel, which means
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Fig. 12. Normalized Euclidean distance betweenwwiener andwmod

considering the IIR channel and the SNRs of10 dB and30 dB.

that the obtained results have confirmed our expecta-
tion with respect to the potential difference between
wmod andwwiener when the equalizer approaches the
ZF condition.

In order to complete our analysis, we shall verify
the behavior of the NLMS algorithm in this sce-
nario. Thus, we show in Figure 13 the contours of
the standard and modified MSE surfaces along with
the trajectories associated with the LMS and the
NLMS considering the SNR of10 dB andα = 0.8,
which was a case with a large difference between
wmod and wwiener. The initial condition and the
adopted step size were equal tow = [1.5;−2.2]T

andµ = 0.005, respectively, for both the algorithms.

Similarly to the previous scenario, we can infer
that the normalization of data contributes to a faster
convergence of a gradient-based algorithm, but, due
to the presence of noise, the optimum solution is
slightly different than the Wiener filter.

IV. CONCLUSION

In this work, we investigated the behavior of the
NLMS algorithm in terms of the expected optimum
filter it may obtain in the context of the chan-
nel equalization problem. The analysis considered
different situations regarding the transmitted signal
modulation, the channel and the noise power, aiming
at verifying the circumstances that may lead to a
deviation from the Wiener solution.
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Fig. 13. Contours of the MSE and modified MSE surfaces consid-
ering the IIR channel and the SNR of10 dB. The X mark refers to
wmod, whereas the circle represents the Wiener solution.

The obtained results indicate that the optimum
solution found by NLMS can be considerably dif-
ferent when compared with the Wiener solution in
certain cases. In particular, the difference between
these solutions tends to be more pronounced when
the equalizer does not have as many coefficients as
needed for a proper inversion of the channel. In such
condition, the optimum equalizer found by NLMS
yielded a worse performance in terms of the bit error
probability when compared with the Wiener filter.

On the other hand, as we increase the size of the
input modulation, the difference between the LMS
and NLMS solutions is reduced, reaching negligible
values when the input signal has a continuous
distribution, even when the equalizer is not capable
of perfectly inverting the channel. With respect to
the effect of noise, two different aspects have been
observed: (i) for the IIR channel, the presence of
noise may increase the difference betweenwmod and
wwiener; (ii ) for the FIR channel, the addition of noise
makes the modified solution more similar to the
Wiener solution. As perspective for future works, a
theoretical analysis of the NLMS optimum solution
is certainly pertinent.
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