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A Double Sigmoid-Based Beamforming Algorithm
With Reduced Computational Complexity

Raimundo N. G. Robert, Ciro André Pitz, and Rui Seara

Abstract—This paper introduces a new adaptive beamforming
algorithm for cellular systems. Such an algorithm is based
on the adaptive combination of vector projections (ACVP)
framework presented in the open literature. The main novelty
of the proposed algorithm is the use of both unipolar and
bipolar sigmoid functions for supporting the adjustment of the
combination coefficients used in the ACVP framework. The
degree of freedom of these sigmoid functions allows updating
the beamforming coefficients by using a smaller number of
vector projections. As a consequence, the proposed algorithm,
termed here double sigmoid ACVP (DS-ACVP), presents a low
computational complexity and is capable of outperforming other
adaptive beamforming algorithms from the literature. Numerical
simulation results corroborate the effectiveness of the proposed
approach.

Index Terms—Adaptive algorithm, adaptive antenna ar-
rays, beamforming, mobile communications, stochastic gradient
method.

I. I NTRODUCTION

A NTENNA arrays have been proven to be a powerful ap-
proach for increasing the capacity of cellular systems [1]-

[3]. The spatial filtering capability of the antenna arrays can
be exploited by beamforming algorithms aiming to reduce the
interference levels and strengthen the signal of interest (SOI)
in both uplink and downlink channels. Moreover, considering
adaptive beamforming algorithms, a real-time adjustment of
the radiation pattern can be achieved, leading to higher levels
of signal-to-interference-plus-noise ratio (SINR) [4].

Most adaptive beamforming algorithms consider the avail-
ability of a training sequence for its proper operation. In
the conventional approach discussed in [5], the error signal
resulting from the difference between the training signal and
the array output is used to control the beamforming algorithm.
The major drawback of this strategy is its dependence on high
levels of correlation between the SOI and the training signal,
which is a hard condition to be fulfilled in cellular systems [6].
In this context, most recent beamforming approaches are based
on a priori knowledge of the channel state information (CSI),
which is estimated by using training sequences. For instance,
efficient schemes for distributed transmit beamforming are
derived in [7] by means of an optimal training sequence
design. In [8], a reduced-dimension training sequence is pro-
posed for estimating the downlink CSI and obtaining a hybrid
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analog-digital beamforming in large-scale antenna systems. In
addition, CSI feedback mechanisms are discussed in [9] and
[10] in order to compute the downlink transmit beamforming
in frequency division duplex (FDD) systems. Another common
strategy used in adaptive beamforming is to minimize the
antenna array output power subject to array gain constraints
in the SOI direction [11]. Specifically, the beamforming algo-
rithms of this class are derived from the minimum variance
criterion [12], [13], thus requiring an accurate estimate of both
the input autocorrelation matrix and the direction-of-arrival
(DOA) of the SOI [14], [15]. As a consequence, even small
errors in the estimation process may significantly reduce the
performance of the algorithms based on this strategy [15].
Aiming to overcome this problem, algorithms such as those
discussed in [16]-[21] were developed to provide robustness
against estimation errors.

Some algorithms discussed in the open literature aim to
reduce the additional resources required for either providing a
training signal or estimating the CSI, the input autocorrelation
matrix, and the DOA. Such algorithms provide both high SINR
performance and low computational burden by exploiting
some particular aspects of mobile communication systems.
For instance, the algorithms introduced in [22]-[24] only use
the signals already available at the input and output of the
correlators in code-division-multiple-access (CDMA) systems.
On the other hand, the constrained stochastic gradient (CSG)
algorithms [25] and its improved version (ICSG) [26] consider
the space-time equalization structure discussed in [27], aiming
to obtain the downlink beamforming from the uplink data
symbols. The implementation challenges of the CSG-type
beamforming algorithms are overcome in [28] by introduc-
ing the adaptive-projection CSG (AP-CSG), which yields
lower computational complexity and higher SINR levels than
both CSG and ICSG algorithms. Furthermore, the adaptive-
projection approach presented in [28] is used in [29] to derive a
new form of quadratically-constrained minimization problem.
As a result, the adaptive-projection quadratically-constrained
stochastic gradient (AP-QCSG) algorithm is developed, im-
proving the SINR performance in realistic scenarios formed
by spatially distributed sources [29].

In [30], a new framework for adaptive beamforming design
is derived from a unifying view on the mean behavior of
adaptive-projection CSG-type algorithms. Such a framework,
termed adaptive combination of vector projections (ACVP),
is introduced in [30] to devise the sigmoid-based ACVP
(SB-ACVP) beamforming algorithm, which applies a unipolar
sigmoid function for dynamically adjusting the linear com-
bination in the ACVP framework. Such as the CSG-type
beamforming algorithms, the SB-ACVP considers a space-
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time equalization structure [27] to separate the SOI from the
interferences. The disadvantage of such an approach is that
it requires a minimum initial SINR for detecting the data
symbols related to the SOI from the uplink signal. However,
such a minimum SINR can be reduced by adaptive modulation
and coding schemes [31], [32], which allow the use of low-
order modulation and low-rate coding at the beginning of
the communication session. As shown in [30], the SB-ACVP
outperforms competing algorithms from the open literature
and presents a better trade-off between performance and
computational cost. Thus, taking into account the satisfactory
performance of the SB-ACVP, the present paper proposes
a novel adaptive beamforming algorithm also based on the
ACVP framework. In contrast to the SB-ACVP, the proposed
algorithm, termed here double sigmoid ACVP (DS-ACVP),
obtains the linear combination coefficients using both unipolar
and bipolar sigmoid functions, allowing to reduce the number
of vector projections required in the beamforming update.
As a consequence, the proposed DS-ACVP presents high
SINR performance with lower computational complexity as
compared with the SB-ACVP.

This paper is organized as follows. Section II presents
the theoretical basis, including both system model and prob-
lem statement. Section III revisits the ACVP framework and
the SB-ACVP algorithm. Section IV presents the proposed
DS-ACVP algorithm. Section V shows numerical simulation
results aiming to assess the performance of the proposed
DS-ACVP algorithm. Finally, Section VI presents concluding
remarks.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The scenario considered here involves a linear array with
K antennas located at the base station (BS) andM users that
share the same channel. In this scenario, the baseband signal
received at the BS is arranged in the input vectorx(n) ∈
CK×1, which is given by

x(n) =
M
∑

m=1

sm(n) + r(n) (1)

with sm(n) and r(n) ∈ CK×1 representing, respectively, the
signal corresponding to themth user and the additive white
Gaussian noise (AWGN) present in the antennas. By assuming
L independent paths between each user and the BS,sm(n) can
be modeled as

sm(n) = Hmvm(n) (2)

where vm(n) ∈ CL×1 denotes the vector containing the
symbols coming from each multipath, andHm ∈ CK×L

represents the spatial response matrix whose columnhm,l

denotes the steering vector of the signal arriving from thelth
multipath between themth mobile terminal and the BS [2].

The antenna array output, represented byy(n), is expressed
as the inner product between the beamforming vectorw(n) ∈
CK×1 and the input vectorx(n), i.e.,

y(n) = wH(n)x(n). (3)

Then, aiming to evaluate the SINR provided byw(n), the
variance ofy(n) is obtained as

σ2
y(n) = E[|y(n)|2] = wH(n)Rxw(n) (4)

whereRx = E[x(n)xH(n)] denotes the input autocorrelation
matrix.

Now, assuming that the symbols coming from each multi-
path are independent, i.e.,

E[vm(n)vH
m(n)] =

Pm

L
IL (5)

with IL and Pm characterizing, respectively, the identity
matrix with dimensionL × L and the power of the received
symbols, (4) can be rewritten as

σ2
y(n) =

M
∑

m=1

PmwH(n)Rmw(n) + σ2
r ||w(n)||2 (6)

whereRm(n) = HmHH
m/L denotes the spatial covariance

matrix of themth mobile terminal andσ2
r is the noise variance.

Next, assuming thatm = 1 corresponds to the SOI, the
interference-plus-noise power can be separated from the SOI
power in (6), resulting in the following SINR expression:

Γ(n) =
wH(n)Rsoiw(n)

wH(n)Rintw(n) + σ2
r ||w(n)||2

(7)

with Rsoi = P1R1 and Rint =
∑M

m=2 PmRm denoting
the correlation matrices corresponding to the SOI and to the
interference, respectively.

The CSG-type algorithms presented in [25], [26], [28],
and [29] operate based on the availability of both SOI and
interference-plus-noise signal. As discussed in [27], a space-
time equalization structure can be used to estimate the SOI
from x(n). Then, definingd(n) ∈ CK×1, which contains the
SOI snapshots at each antenna of the array, and subtracting it
from x(n), a vectorz(n) = x(n) − d(n) composed of snap-
shots of the interference-plus-noise signal is obtained. Thus,
with the availability of bothd(n) andz(n), the instantaneous
SINR given by

Γ̂(n) =
wH(n)d(n)dH(n)w(n)

wH(n)z(n)zH(n)w(n)
(8)

is used as the objective function of the CSG-type beamforming
algorithms. Specifically, the CSG [25] and the ICSG [26] are
devised aiming to maximize (8) in two stages: in the first,
the denominator of (8) is kept fixed while the numerator
is maximized; in the second, the denominator is minimized
keeping the numerator fixed. As a drawback, both CSG and
ICSG require the individual estimation of each interfering
signal, which is not an easy task due to the low power levels of
the interferers. In contrast, the AP-CSG algorithm [28] is de-
veloped in order to eliminate the need for individual estimation
of the interfering signals. To this end, the denominator of (8) is
minimized while an adaptive-projection constraint is usedfor
steeringw(n) toward the SOI subspace [28]. Regarding the
AP-QCSG [29], the approach consists of replacing the affine
adaptive projection constraint considered in [28] by a more
effective quadratic adaptive constraint, which allows exploiting
all subspace spanned by the SOI.
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III. R EVIEW OF THE ACVP FRAMEWORK

The ACVP framework proposed in [30] is based on a
geometric interpretation of both AP-CSG and AP-QCSG al-
gorithms. Such a geometric interpretation is obtained from
the stochastic model describing the mean-weight behavior of
these algorithms. In the case of the AP-CSG, the mean-weight
behavior expression is written as

E[w(n+ 1)] = E[w(n)]− µ1RintE[w(n)]

+ µ2RsoiE[w(n)] + µ1RsoiRintE[w(n)] (9)

whereµ1 and µ2 denote the step-size parameters, andRsoi
is the normalized autocorrelation matrix of the SOI, given by
[18]

Rsoi = E

[

d(n)dH(n)

||d(n)||2

]

. (10)

As shown in [26], such a matrix can be analytically obtained
from the eigendecomposition ofRsoi.

Regarding the AP-QCSG, the mean-weight behavior is
modeled as follows [30]:

E[w(n+ 1)] = E[w(n)]− µ1RintE[w(n)]

+ E[χ(n)]RsoiE[w(n)] +
µ1

2
RsoiRintE[w(n)] (11)

with

E[χ(n)] ∼=
1

2
µ1

E[G∗

dz
(n)]

E[Gd(n)]
+

√

E[∆(n)]

E[Gd(n)]
− 1 (12)

E[∆(n)] ∼= (1 + µ2){E[Gd(n)]}
2
− µ2

1 Im{E[Gdz(n)]} (13)

E[Gd(n)] = E[wH(n)]RsoiE[w(n)] (14)

and
E[Gdz(n)] = E[wH(n)]RsoiRintE[w(n)]. (15)

It is shown in [30] that the mean-weight behavior of
both AP-CSG and AP-QCSG algorithms are somewhat sim-
ilar. More specifically, one verifies from (9) and (11) that
such algorithms operate based on the linear combination of
v1(n) = RintE[w(n)], v2(n) = RsoiE[w(n)], andv3(n) =
RsoiRintE[w(n)]. In the case of the AP-CSG, the linear com-
bination is fixed, with the coefficients given, respectively, by
−µ1, µ2, andµ1. On the other hand, the AP-QCSG algorithm
performs the linear combination by using fixed coefficients
for v1(n) andv3(n) (−µ1 andµ2/2, respectively), whereas
the coefficient corresponding tov2(n) is given by the time-
varying term E[χ(n)]. Thus, taking into account the difference
of performance between the considered algorithms [29], the
idea behind the ACVP framework is to dynamically adjust
the linear combination ofv1(n), v2(n), andv3(n) aiming to
enhance the SINR levels at the antenna array output [30].

The general update expression of the ACVP framework is
derived in [30] balancing the individual contribution of the
vectors on the right-hand side of (9) and (11). To this end,
v1(n) is replaced bȳv1(n) = RintE[w(n)], with

Rint = E

[

z(n)zH(n)

||z(n)||2

]

(16)

denoting the normalized version ofRint. Since the sum of the
eigenvalues ofRint is unitary (normalized matrix), one can
verify that ||v̄1(n)|| ≤ ||E[w(n)||. This upper bound is also
obtained forv2(n) as a result of the normalized matrixRsoi.
Concerningv3(n), its balanced version is given bȳv3(n) =
RsoiRintE[w(n)], resulting in ||v̄3(n)|| ≤ ||E[w(n)||. Then,
consideringv̄1(n), v̄2(n) = v2(n), and v̄3(n), the ACVP
framework proposes a general algorithm whose mean-weight
behavior is written as

E[w(n+ 1)] = E[w(n)] +

3
∑

i=1

βi(n)v̄i(n) (17)

whereβi(n) represents theith time-varying combination co-
efficient [30].

The first practical outcome of the ACVP framework is the
SB-ACVP algorithm, which was developed in [30] using a
unipolar sigmoid function to support the adjustment ofβi(n).
The choice of the unipolar sigmoid function is due to its
limited range (from 0 to 1), making it easier to control the indi-
vidual contribution of each vector̄vi(n) in (17). Furthermore,
the sigmoid function leads to a reduced stochastic gradient
noise for values close to its range limits.

As shown in [30], the SB-ACVP exhibits low computational
burden and provides higher SINR levels than the CSG-type
beamforming algorithms. Table I summarizes the SB-ACVP
algorithm, whereφ[αi(n)] denotes the unipolar sigmoid func-
tion with −∞ < αi(n) < ∞, µ is a parameter that determines
the range ofβi(n), w′(n) characterizes the beamforming
vector obtained before the normalization step (last step of
the algorithm), andIK represents the identity matrix with
dimensionK ×K [30].

TABLE I
SUMMARY OF THE SB-ACVP ALGORITHM

Initialize w(0), α1(0) andα2(0)

Do for n = 1, 2, 3 . . .

φ[α1(n)] =
1

1 + e−α1(n)
, φ[α2(n)] =

1

1 + e−α2(n)

w
′(n) = w(n) − µφ[α1(n)]

z(n)zH(n)

||z(n)||2
w(n)

+µφ[α2(n)]
d(n)dH(n)

||d(n)||2
w(n)

+µ{1− φ[α2(n)]}
d(n)dH(n)

||d(n)||2
z(n)zH(n)

||z(n)||2
w(n)

q1(n) = −µ{1− φ[α1(n)]}φ[α1(n)]
z(n)zH(n)

||z(n)||2
w(n)

q2(n) = µ{1− φ[α2(n)]}φ[α2(n)]

×
d(n)dH(n)

||d(n)||2

[

IK −
z(n)zH(n)

||z(n)||2

]

w(n)

Do for i = 1, 2

αi(n+ 1) = αi(n) +
Re[qH

i (n)d(n)d
H(n)w′(n)]

w′H(n)d(n)dH(n)w′(n)

−
Re[qH

i (n)z(n)z
H(n)w′(n)]

w′H(n)z(n)zH(n)w′(n)

w(n+ 1) =
w′(n)

||w′(n)||
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IV. PROPOSEDALGORITHM

In order to develop the proposed beamforming algorithm, let
us first introduce both unipolar and bipolar sigmoid functions
for supporting the adjustment ofβi(n) in (17). In contrast
to the SB-ACVP [30], the proposed DS-ACVP algorithm is
derived by using a bipolar sigmoid function to support the
adjustment ofβ1(n), i.e.,

β1(n) = µγ[α1(n)] (18)

whereµ is a parameter that specifies the range ofβ1(n), and
γ[α1(n)] denotes the bipolar sigmoid function, which is given
by

γ[α1(n)] =
2

1 + e−α1(n)
− 1 (19)

with −∞ < α1(n) < ∞. One notices from (19) thatβ1(n)
can assume both positive and negative values, which may
infer that the bipolar sigmoid function is an inappropriate
choice, sinceβ1(n) is defined as a negative coefficient in both
AP-CSG and AP-QCSG algorithms. However, in cases where
the SOI lies in the interference subspace, negative values of
β1(n) significantly reduce the projection ofw(n) onto the
SOI subspace. Thus, a positive value ofβ1(n) improves the
SINR performance in these cases, preventingw(n) from being
steered toward the null space of the SOI. With respect to
β2(n), the strategy considered here is to use a positive range
for its values, sincēv2(n) lies in the SOI subspace [30]. Then,
as in the SB-ACVP (see Table I), the proposed algorithm
adjustsβ2(n) according to

β2(n) = µφ[α2(n)] (20)

where

φ[α2(n)] =
1

1 + e−α2(n)
(21)

denotes the unipolar sigmoid function. Regardingβ3(n), the
proposed algorithm takes into account the contribution of
v̄3(n) in (17). Such a vector becomes more significant in
(17) as the projection ofd(n) onto the interference subspace
increases. This characteristic ofv̄3(n) is considered by the
SB-ACVP algorithm to adjustβ3(n) in such a way thatw(n)
is not steered toward the null space of the SOI [30]. On the
other hand, the additional degree of freedom provided by the
bipolar sigmoid function in (18) allows neglectinḡv3(n) in
(17) without loss of algorithm performance. Thus, aiming to
reduce the computational complexity, the proposed DS-ACVP
algorithm is derived considering

β3(n) = 0 ∀n. (22)

Now, aiming to obtain the beamforming vector, we substi-
tute (18)-(22) into (17) and eliminate the expected value from
the resulting expression, leading to

w(n+ 1) = w(n) + µγ[α1(n)]
z(n)zH(n)

||z(n)||2
w(n)

+ µφ[α2(n)]
d(n)dH(n)

||d(n)||2
w(n). (23)

For updatingα1(n) and α2(n) in (23), we use the steepest
ascent method [33] as follows:

αi(n+ 1) = αi(n) +∇f [Γ̂(n)] (24)

with f [Γ̂(n)] denoting some arbitrary utility function that is
strictly increasing with the instantaneous SINR̂Γ(n). As in
[30], we choose the natural logarithm function to represent
such a utility function, i.e.,

f [Γ̂(n)] =
1

2
log

[

wH(n)d(n)dH(n)w(n)

wH(n)z(n)zH(n)w(n)

]

. (25)

This function is strictly increasing in̂Γ(n) and allows easy
computation of the gradient∇f [Γ̂(n)] in (24). Then, assuming
thatαi(n) is updated after obtainingw(n+1), (24) is rewritten
as

αi(n+ 1) = αi(n) +
Re[qH

i (n)d(n)d
H(n)w(n+ 1)]

wH(n+ 1)d(n)dH(n)w(n+ 1)

−
Re[qH

i (n)z(n)z
H(n)w(n+ 1)]

wH(n+ 1)z(n)zH(n)w(n+ 1)
(26)

with

qi(n) =
∂w(n+ 1)

∂αi(n)
. (27)

Next, substituting (23) into (27), and considering that

∂γ[α1(n)]

∂α1(n)
=

1

2
{1− γ2[α1(n)]} (28)

and
∂φ[α2(n)]

∂α2(n)
= {1− φ[α2(n)]}φ[α2(n)] (29)

q1(n) andq2(n) are written as follows:

q1(n) = µ
1

2
{1− γ2[α1(n)]}

z(n)zH(n)

‖z(n)‖2
w(n) (30)

and

q2(n) = µφ2[α2(n)]{1− φ2[α2(n)]}
d(n)dH(n)

‖d(n)‖
2 w(n). (31)

Finally, as in the SB-ACVP algorithm, the resultingw(n+1)
is normalized aiming to avoid an unlimited growth of||w|| that
may arise from the vector summation present in the right-hand
side of (23).

The proposed DS-ACVP algorithm is summarized in Table
II. Regarding the computational complexity, Table III presents
the number of real operations per iteration required by the
algorithms considered in this paper. The first two terms of
the Taylor series expansion are considered to obtain the
computational load of the sigmoid functions given by (19) and
(21). From Table III, we verify that the proposed algorithm
yields a smaller complexity than both ICSG and SB-ACVP
algorithms.
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TABLE II
SUMMARY OF THE DS-ACVP ALGORITHM

Initialize w(0), α1(0) andα2(0)

Do for n = 1, 2, 3 . . .

γ[α1(n)] =
2

1 + e−α1(n)
− 1, φ[α2(n)] =

1

1 + e−α2(n)

w
′(n) = w(n) + µγ[α1(n)]

z(n)zH(n)

||z(n)||2
w(n)

+µφ[α2(n)]
d(n)dH(n)

||d(n)||2
w(n)

q1(n) =
µ

2
{1− γ

2[α1(n)]}
z(n)zH(n)

||z(n)||2
w(n)

q2(n) = µ{1− φ[α2(n)]}φ[α2(n)]
d(n)dH(n)

‖d(n)‖2
w(n)

Do for i = 1, 2

αi(n+ 1) = αi(n) +
Re[qH

i (n)d(n)d
H(n)w′(n)]

w′H(n)d(n)dH(n)w′(n)

−
Re[qH

i (n)z(n)z
H(n)w′(n)]

w′H(n)z(n)zH(n)w′(n)

w(n+ 1) =
w′(n)

||w′(n)||

TABLE III
COMPUTATIONAL LOAD FORK ANTENNAS

Algorithm
Number of real operations per iteration

Multiplications Additions Divisions
Square
roots

ICSG [26] 66K + 34 52K − 8 5 1
AP-CSG [28] 28K + 6 24K − 4 2 1

AP-QCSG [29] 30K + 37 28K + 5 3 2
SB-ACVP [30] 46K + 77 38K + 22 5 1

DS-ACVP
(proposed)

40K + 57 34K + 14 5 1

V. SIMULATION RESULTS

In this section, Monte Carlo (MC) simulations (obtained
from 200 independent runs) are presented to assess and com-
pare the performance of the ICSG, AP-CSG, AP-QCSG, SB-
ACVP, and DS-ACVP (proposed) algorithms. It is important
to highlight that the algorithms considered here do not require
estimating the DOA, the input autocorrelation matrix and/or
the CSI.

A. Simulation setup, parameters, and figures of merit

All simulation scenarios considered here use a linear array
with K = 8 omnidirectional antennas uniformly spaced
by half a wavelength. The step-size parameters are chosen
aiming to provide the best performance for all algorithms,
and the beamforming vectors are initialized withw =

[1 0 · · · 0]
T
, which corresponds to an omnidirectional

radiation pattern over the azimuth plane. In all simulations,
the normalized power (relative to the noise power) of the

signals arriving at the BS is fixed in 30 dB for the SOI and
20 dB for the interfering signals (coming from co-channel
cells). Moreover, a Rayleigh channel withL = 12 independent
fading paths is considered, giving rise to an angle spread of
5◦ around the angle of arrival of each user.

With respect to the figures of merit considered in the
simulations, we evaluate the SINR [given by (7)] during the
iterative process and the radiation pattern in the last iteration
of the corresponding algorithm. In addition, the sigmoid func-
tion curves related to the DS-ACVP algorithm are presented
aiming to verify the effectiveness of the proposed approachfor
adjusting the combination coefficients. All curves are obtained
by averaging the Monte Carlo runs.

B. Experimental results

Example 1: In this example, we assess the performance of
the beamforming algorithms in a scenario with low interfer-
ence levels, in which the DOA of the SOI is quite different
from the DOAs of the interfering signals. The scenario consists
of a SOI located at0◦ and two interfering signals located
at 30◦ and−30◦. The results of this example are shown in
Fig. 1. From the SINR results presented in Fig. 1(a), one
can notice that the proposed DS-ACVP algorithm outperforms
the ICSG, AP-CSG, and AP-QCSG algorithms. Moreover,
the DS-ACVP provides faster convergence rate and similar
steady-state SINR as compared with the SB-ACVP algorithm.
The radiation patterns illustrated in Fig. 1(b) show that both
SB-ACVP and DS-ACVP algorithms exhibit the best tradeoff
between the gain in the SOI direction (indicated by◦) and
the attenuation in the direction of the interferers (indicated by
×). In addition, the curves corresponding to the evolution of
γ[α1(n)] andφ[α2(n)] are shown in Fig. 1(c). One observes
from these curves that the unipolar sigmoid functionφ[α2(n)]
grows at the initial transient phase aiming to increase the
projection ofw(n) onto the SOI subspace. Hereafter,φ[α2(n)]
andγ[α1(n)] are decreased down to their lower bounds, thus
steeringw(n) towards the null space of the interfering signals.
Such a behavior ratifies the effectiveness of the proposed
strategy for obtaining coefficientsβ1(n) andβ2(n).

Example 2: In this second example, the SOI and one
interferer arrive at the BS with nearby angles-of-arrival,thus
allowing to assess the spatial filtering capability of the algo-
rithms. In such a scenario, the SOI is located at45◦ and the
two interfering signals are located at40◦ and50◦. The curves
obtained in this example are depicted in Fig. 2. From the SINR
results shown in Fig. 2(a), one notices that the steady-state
SINR levels achieved by all algorithms are lower than those
of the previous example, which is due to the proximity of the
involved signals. Nevertheless, the proposed DS-ACVP leads
to higher SINR levels as compared with the other algorithms
considered here. The radiation patterns presented in Fig. 2(b)
also confirm a better performance of the proposed algorithm.
In addition, as compared with the results obtained in Exam-
ple 1, one observes from Fig. 2(c) thatγ[α1(n)] takes longer
to achieve its lower bound andφ[α2(n)] does not reach zero.
This behavior confirms the proper operation of the proposed
algorithm, sincēv1(n) contains vector components that lie in
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the SOI subspace (due to the SOI-interferer proximity) and a
higher contribution of̄v2(n) has been taking into account for
preventing SOI suppression.

Example 3: In this example, we consider a scenario with
high interference levels in which the SOI and one interferer
arrive at the BS with the same DOA. Specifically, the SOI
and the first interfering signal are located at−30◦, whereas
the second interferer is located at30◦. This is a challenging
scenario due to the intersection between the subspaces spanned
by the involved signals. Therefore, any unbalanced behavior of
the beamforming algorithm [26] results in the suppression of
the SOI. The results of this example are illustrated in Fig. 3. As
shown in Figs. 3(a) and (b), all algorithms lead to the same
steady-state SINR levels and present very similar radiation
patterns. Such a result indicates that the proposed algorithm
in severe conditions prevents SOI suppression as is done by
SB-ACVP and CSG-type algorithms. The sigmoid function
curves shown in Fig. 3(c) confirm that the combination coeffi-
cients are adjusted aiming to attenuate the interferers without
reducing the gain in the SOI direction.

Example 4: The aim of this example is to verify the tracking
capability of the algorithms. The scenario is composed of an
SOI located at60◦, and two interferers arriving with DOAs
of 60◦ and −60◦. Then, after 400 iterations, the DOA of
the SOI is changed to30◦. After this change, the increase
of the difference between the DOAs allows enhancing the
SINR at the array output. This behavior is noticed in Fig. 4,
in which the curves of SINR presented in Fig. 4(a) confirm
that both SB-ACVP and DS-ACVP outperform the CSG-type
algorithms after changing the SOI direction. Figs. 4(b) and(c)
show the radiation patterns at iterationn = 400 (immediately
before changing the DOA) and iterationn = 800, illustrating
the tracking capability of the algorithms considered here.In
addition, one notices from Fig. 4(d) that the values ofγ[α1(n)]
andφ[α2(n)] are properly adjusted before and after changing
the SOI direction.

Example 5: In this example, we consider a scenario in which
an additional interferer is added after the convergence of the
algorithms. Specifically, the scenario is initialized witha SOI
located at45◦ and three interferers located at−30◦, 0◦, and
80◦. Then, after 750 iterations, another interfering signal is
added at60◦. Such an interferer acts as a disturbance in the
convergence process, allowing to test both stability and adapt-
ability of the algorithms. The ICSG algorithm is not included
in this example, since it has been originally formulated for
scenarios with two interferers. The curves obtained in this
example are depicted in Fig. 5. One observes from Fig. 5(a)
that the algorithms based on the ACVP framework outperform
the CSG-type algorithms considered in this example. As com-
pared with the SB-ACVP, the proposed DS-ACVP achieves a
slightly larger SINR before the iterationn = 750 and provides
a faster convergence rate after adding the fourth interferer.
The radiation patterns shown in Figs. 5(b) and (c) confirm a
better performance of the proposed algorithm. Moreover, the
curves ofγ[α1(n)] andφ[α2(n)] presented in Fig. 5(d) point
out that the interferer added atn = 750 has no influence on the
adjustment of the combination coefficients. Such a behavioris
expected due to the large difference between the DOA of the

SOI and of the new interfering signal.
Example 6: In this last example, we consider a scenario

with high interference levels where the number of interferers
is larger than the number of antennas. This is a challenging
scenario, since the number of antennas is insufficient to place
nulls in the direction of the interfering signals, i.e.K < M−1
[1]. We assume here a SOI located at45◦ and nine interferers
located at−90◦, −70◦, −50◦, −30◦, 0◦, 30◦, 60◦, 80◦, and
90◦. The results of this example are illustrated in Fig. 6. As
shown in Fig. 6(a), the proposed DS-ACVP algorithm provides
the best SINR performance among the algorithms assessed
in this example. The resulting radiation patterns, presented
in Fig. 6(b), corroborate the steady-state SINR achieved by
the beamforming algorithms. In addition, the evolution of the
sigmoid functions shown in Fig. 6(c) illustrates the dynamic
adjustment ofβ1(n) andβ2(n) provided by the proposed DS-
ACVP algorithm.

C. Discussion

The examples presented in this section show that the pro-
posed DS-ACVP outperforms the CSG-type algorithms and
can provide equal or higher SINR than the SB-ACVP algo-
rithm. In particular, Example 1 shows that both SB-ACVP and
DS-ACVP achieve considerably higher SINR levels as com-
pared with the CSG-type algorithms. Example 2 verifies the
ability of the proposed DS-ACVP to suppress interference in
scenarios where the SOI is close to an interfering signal, thus
outperforming all considered algorithms. Example 3 confirms
that the strategy used to adjust the combination coefficients
does not result in an unbalanced behavior of the proposed
DS-ACVP algorithm, which maintains a sufficient gain toward
the SOI even when there is an interference located at this
same direction. Example 4 shows that the proposed DS-ACVP
performs well in nonstationary scenarios and is capable of
tracking variations in the DOA of the SOI. Example 5 corrob-
orates the effectiveness of the proposed approach to readjust
the beamforming vector, aiming to suppress the third interferer
added after the convergence. Finally, we verify in Example 6
that the proposed algorithm is effective to improve the SINR
in scenarios with high interference levels, outperformingthe
competing algorithms considered here.

VI. CONCLUDING REMARKS

In this paper a new beamforming algorithm was introduced
based on the ACVP framework discussed in [30]. Such
an algorithm, called DS-ACVP, considers both unipolar and
bipolar sigmoid functions for controlling the excursion ofthe
combination coefficients involved in the ACVP framework.
This strategy allows reducing the number of vector projec-
tions required in the beamforming update. As a result, the
proposed DS-ACVP algorithm presents a lower computational
complexity than the SB-ACVP algorithm, while maintaining a
competing SINR for performance. Computer results confirmed
the effectiveness of the proposed algorithm.
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Fig. 1. Example 1. (a) SINR comparison. (b) Radiation pattern comparison. (c) Mean behavior of the sigmoid functionsγ[α1(n)] andφ[α2(n)] used by
the proposed DS-ACVP algorithm.
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Fig. 2. Example 2. (a) SINR comparison. (b) Radiation pattern comparison. (c) Mean behavior of the sigmoid functionsγ[α1(n)] andφ[α2(n)] used by
the proposed DS-ACVP algorithm.
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Fig. 3. Example 3. (a) SINR comparison. (b) Radiation pattern comparison. (c) Mean behavior of the sigmoid functionsγ[α1(n)] andφ[α2(n)] used by
the proposed DS-ACVP algorithm.
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Fig. 4. Example 4. (a) SINR comparison. (b) Radiation pattern comparison at the iterationn = 400. (c) Radiation pattern comparison atn = 800. (d) Mean
behavior of the sigmoid functionsγ[α1(n)] andφ[α2(n)] used by the proposed DS-ACVP algorithm.
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Fig. 5. Example 5. (a) SINR comparison. (b) Radiation pattern comparison at the iterationn = 750. (c) Radiation pattern comparison atn = 1500. (d) Mean
behavior of the sigmoid functionsγ[α1(n)] andφ[α2(n)] used by the proposed DS-ACVP algorithm.
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Fig. 6. Example 6. (a) SINR comparison. (b) Radiation pattern comparison. (c) Mean behavior of the sigmoid functionsγ[α1(n)] andφ[α2(n)] used by
the proposed DS-ACVP algorithm.
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Florianópolis, SC, Brazil, 2015.

[31] S.-K. Ahn and K. Yang, “Adaptive modulation and coding
schemes based on LDPC codes with irregular modulation,”IEEE
Trans. Commun., vol. 58, no. 9, pp. 2465–2470, Sep. 2010,
doi: 10.1109/TCOMM.2010.080310.090176.

[32] W. Jiao, H. Ding, H. Wu, and G. Yu, “Spectrum efficiency of
jointing adaptive modulation coding and truncated ARQ withQOS
constraints,” IEEE Access, vol. 6, pp. 46915–46925, Aug. 2018,
doi: 10.1109/ACCESS.2018.2867109.

[33] S. Haykin,Adaptive Filter Theory. 5th ed., Pearson, Upper Saddle River,
NJ, 2014.

Raimundo N. G. Robert was born in Belém,
PA, Brazil. He received the BS degree in electrical
engineering from Federal University of Pará in 1986
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