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Complex Envelope Based Modems: A Tutorial
Dayan Adionel Guimarães

Abstract—The complex envelope or baseband-equivalent rep-
resentation of passband functions is a well-developed theory,
known to provide elegant and, in most cases, eased mathematical
tractability to the analyzes of signals and systems. Although this
theory is covered extensively in many textbooks, there are hidden
concepts and applications of it, for example related to the fast
simulation of communication systems and to the fundamentals for
developing software-defined radios. This tutorial exposes these
concepts using a differentiated didactic approach, aiming at
contributing to the understanding about how to model, simulate
and implement modems based on the complex envelope theory.

Index Terms—Complex envelope, digital modulation, simula-
tion of communication systems, software-defined radio.

I. INTRODUCTION

THE complex envelope representation theory [1]–[4] is
a powerful mathematical tool for analyzing signals and

systems in several areas of science, especially in electrical
engineering and telecommunications, where it is used mainly
to confer an easier mathematical tractability to the analyzes.
It is also a powerful tool for providing insight on how to
develop the related systems, and to implement faster computer
simulations. More recently, the theory is being applied in the
development of wireless communication systems whose design
and operation are strongly dependent of software, the so called
software-defined radios (SDRs).

Basically, in wireless communication systems, the complex
envelope representation theory allows for handling passband
(or bandpass) modulated signals and system equations, which
normally involve the presence of high frequency carrier sig-
nals, using a simpler baseband (or lowpass) equivalent repre-
sentation where the absence of the carrier facilitates mathemat-
ical tractability. Moreover, owed to the fact that the baseband
equivalent signal contains lower frequency components, the
sampling rates in simulations and digital signal processing can
be reduced, thus fastening the associated computations.

The design and operation of SDRs also make extensive
use of such theory, in this case shifting to the software
most of the tasks before used to be performed in hardware,
eventually conferring to the system a large degree of flexibility,
compactness and reliability.

Although covered in several books and articles, many of
the concepts regarding digital modulation and demodulation
using the complex envelope representation theory are hidden
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or difficult to understand, giving opportunities for alternative
approaches, like the one adopted in this tutorial. Instead
of covering the use of the theory to facilitate mathematical
analysis of telecommunication signals and systems, a subject
that is also well covered in many references, the tutorial
addresses other key usages, namely, the basis for simulating
digital modulators and demodulators (modems), and the basis
for understanding how these modems are embedded in SDRs.

The tutorial is targeted to everyone who wants to acquire
working understanding about the underlying theory, especially
the practicing Engineers and the undergraduate and graduate
students in telecommunications and related areas.

However, although the tutorial is concerned with fundamen-
tals, it demands from the reader some knowledge about signals
and systems, and about the basic digital communication theory.

It is also worth highlighting which topics this tutorial does
not aim to address. It does not cover details on the principles
of digital communications, whose basic and advanced material
can be found for example in [5] and [3], respectively. It is also
not targeted at addressing in detail the principles of sampling
and simulation of communication systems, topics extensively
covered in the literature, for example [1], [5]–[7]. The SDR
technology is not covered in detail here as well; it is well
presented for instance in [8]–[12].

The remainder of the tutorial is organized as follows. The
complex envelope representation theory is concisely explained
in Section II. Section III establishes the connections of this the-
ory with SDRs and computer simulations. Section IV recalls
some basic concepts about the generalized modulator and the
maximum likelihood demodulator for passband and complex
envelope signals. Several modems constructed according to
the complex envelope representation theory are discussed in
Section V. A simulation to address the performance of one of
these modems over a fading channel is discussed in Section VI.
Different facets of baseband and passband signal filtering are
considered in Section VII. Section VIII concludes the work.

II. COMPLEX ENVELOPE REPRESENTATION
OF PASSBAND SIGNALS

Following the reasoning adopted in [5], grounded on the
fundamentals deeply explored for instance in [1]–[4], the
theory about the complex envelope representation of passband
signals is shortly reviewed in this section, aiming at giving to
this tutorial a self-contained character, establishing notation,
and building connections with the subsequent topics.

Let s(t) be a continuous-time signal whose Fourier trans-
form is S( f ). The direct and inverse Hilbert transforms of s(t)
are respectively given by

ŝ(t) =
1
π

∫ ∞

−∞

s(τ)
t − τ

dτ, (1)
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s(t) = −
1
π

∫ ∞

−∞

ŝ(τ)
t − τ

dτ. (2)

Recalling that a convolution in the time domain corresponds
to a multiplication in the frequency domain, and noticing in (1)
that the Hilbert transform of s(t) is the convolution between
s(t) and the function 1/πt, then the Fourier transform pair
1/(πt) 
 − jsgn( f ) can be applied to yield

Ŝ( f ) = − jsgn( f )S( f ), (3)

where j =
√
−1 and sgn( f ) is the sign function defined as

sgn( f ) =



1, f > 0
0, f = 0
−1, f < 0

.

From (3) it can be seen that the Hilbert transform of s(t)
corresponds to a phase shift of −90 degrees for the positive
frequencies of S( f ) and a phase shift of +90 degrees for the
negative frequencies.

Another useful signal representation is the analytic part, or
pre-envelope of s(t), which is defined as

s+(t) = s(t) + j ŝ(t), (4)

from where, applying (3) and the definition of sgn( f ), it
follows that

S+( f ) = S( f ) + sgn( f )S( f ) =



2S( f ), f > 0
S(0), f = 0
0, f < 0

. (5)

Thus, the analytic function s+(t) represents a complex-
valued signal that has no negative frequency components.

Now, consider that s(t) is a passband signal, which means
that its bandwidth is essentially confined in a given bandwidth
that is small compared to its center frequency fc . From (5),
the analytic spectrum S+( f ) is centered about fc and contains
only positive frequencies. Then, using the frequency-shift
property [5, p. 104] of the Fourier transform, the pre-envelope
s+(t) can be written as a shifted version of some baseband
function (whose spectrum is centered about f = 0) to the
frequency fc , that is,

s+(t) = s̃(t)e j2π fc t, (6)

where s̃(t) is the baseband signal defined as the complex
envelope of s(t), also known as the baseband-equivalent of
s(t), which in light of (4) can be written as

s̃(t) = s+(t)e− j2π fc t

=
[
s(t) + j ŝ(t)

]
e− j2π fc t,

or, equivalently,

s(t) + j ŝ(t) = s̃(t)e j2π fc t .

From this last equation it follows that since s(t) is real,
it can be written as the real part of the right-hand side. The
important concept of the complex envelope representation of
the passband signal s(t) results from this fact, that is,

s(t) = Re
[
s̃(t)e j2π fc t

]
. (7)

Notice that if s(t) is written in terms of some co-sinusoidal
carrier, which is usually the case, its complex envelope
representation becomes consistent with the Euler’s formula
e j x = cos(x) + j sin(x), since cos(x) = Re[e j x ], where Re[·]
denotes the real part of the argument. Analogously, the relation
sin(x) = Re[− je j x ] can be used when the carrier is sinusoidal.

The complex envelope s̃(t) in Cartesian form is

s̃(t) = sI (t) + j sQ (t), (8)

where sI (t) and sQ (t) are usually referred to as the in-phase
(or direct) component and the quadrature component of s̃(t),
respectively. Since s̃(t) is a baseband function, then sI (t) and
sQ (t) are also baseband functions.

Substituting (8) in (7), one obtains, after some straightfor-
ward simplifications, the important relation

s(t) = sI (t) cos(2π fc t) − sQ (t) sin(2π fc t). (9)

The complex envelope (8) in the polar form is

s̃(t) = A(t)e jθ (t ) . (10)

Applying the complex envelope representation of s(t) given
in (7) to the previous equation yields

s(t) = Re
[
A(t)e jθ (t )e j2π fc t

]

= A(t) cos
[
2π fc t + θ(t)

]
. (11)

In this equation, A(t) = | s̃(t) | is the envelope of the
passband signal s(t), or its amplitude-modulated component,
which can be expressed as a function of the in-phase and the
quadrature components according to

A(t) =
√

s2
I (t) + s2

Q
(t), (12)

and θ(t) is the phase of s(t), or its phase-modulated compo-
nent, expressed in terms of the in-phase and the quadrature
components as

θ(t) = arctan
(

sQ (t)
sI (t)

)
. (13)

The general form s(t) = A(t) cos
[
2π fc t + θ(t)

]
can be used

to represent several modulated signals. For instance, if A(t)
is constant and θ(t) assumes M equally spaced phases, s(t)
becomes an M-ary phase-shift keying (MPSK) signal. If A(t)
is constant and θ(t) varies piece-wise-linearly according to
M symbol-dependent slopes, s(t) turns out to be an M-ary
frequency-shift keying (MFSK) signal. On the other hand, if
A(t) and θ(t) assume M properly designed pairs of amplitudes
and phases, s(t) can be cast as an M-ary quadrature amplitude
modulation (MQAM) signal.

Applying the Euler’s formula to (10), another useful relation
arises, which is

s̃(t) = A(t) cos[θ(t)] + j A(t) sin[θ(t)], (14)

meaning that
sI (t) = A(t) cos[θ(t)] (15)

and
sQ (t) = A(t) sin[θ(t)]. (16)
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Finally, from (11) it can be found a useful rule for easily
determining the complex envelope of a passband signal or
system function, hereafter referred to as the golden rule:

Golden rule to find the complex envelope:

1) Let the passband function be written according to the
general form s(t) = A(t) cos

[
2π fc t + θ(t)

]
.

2) Write the complex envelope representation of s(t)
as the real part of A(t)e jξ (t ) , where ξ (t) is the
whole argument of the cosine function, yielding
s(t) = Re[A(t)e j2π fc t+ jθ (t )].

3) Factor the exponential into the product of exponen-
tials, keeping evident the term e j2π fc t , which results in
s(t) = Re[A(t)e jθ (t )e j2π fc t ].

4) The complex envelope is everything multiplying e j2π fc t ,
that is, s̃(t) = A(t)e jθ (t ) , which is indeed the polar
form (10).

5) If the carrier signal is sinusoidal, meaning that
s(t) = A(t) sin

[
2π fc t + θ(t)

]
, then it follows that

s̃(t) = − j A(t)e jθ (t ) , since the complex envelope repre-
sentation in this case is s(t) = Re[− j A(t)e j2π fc t+ jθ (t )].

The complex envelope and the complex envelope represen-
tation of a passband signal or system can be also written in
the frequency domain. This alternative is not explored in detail
here, since the time-domain approach suffices for the purpose
of this tutorial. For additional material, the interested reader
can resort for instance to [1, Ch. 3] and [2, Ap. A].

III. THE ROLE OF THE COMPLEX ENVELOPE IN
SOFTWARE-DEFINED RADIOS AND SIMULATIONS

The complex envelope representation is key to understand
the concepts behind the design of SDRs and the implemen-
tation of computer simulations of signals and systems. This
is owed mainly to the fact that the complex envelope s̃(t)
is an alternative baseband version of the passband signal
s(t), demanding lower sampling rates. This lower sampling
rates in turn reduces the computational burden, speeding up
simulations and making it feasible and fast the digital signal
processing tasks that are necessary to build SDRs.

A. The complex envelope in SDRs

In the SDR framework, the signals sI (t) and sQ (t), being
baseband signals, allow for efficient processing in the dig-
ital domain, via digital signal processors (DSPs), field pro-
grammable gate arrays (FPGAs) or computers. For example,
a given modulated signal can be generated digitally, and then
converted into the analog domain using its complex envelope
in the form of sI (t) and sQ (t). These signals then feed an
IQ modulator, which is the device responsible for generating
s(t) from sI (t) and sQ (t), via (9). Figure 1 illustrates this
SDR based modulator, where the input signal can be digital
or analog, representing the information-bearing signal. If the
input signal is analog, it obviously goes through an analog-to-
digital (A/D) conversion before digital processing.

The spectrum translation from baseband to passband, which
is realized by the sine and cosine carrier modulations in Fig. 1,
can be made directly or in two steps: from baseband to an
intermediate frequency (IF), and then from IF to passband.
In the digital domain, this translation is typically made by a
digital up-converter (DUC) device [13, Ch. 13] [14, Ch. 12].

Fig. 1. Simplified block diagram of an SDR modulator. The block marked
in dashed line is usually referred to as the IQ modulator.

The analogy applies to the passband received signal, which
is typically an impaired version of s(t): The received in-
phase and quadrature baseband signals that are subsequently
processed in the digital domain are obtained by passing s(t)
thorough an IQ demodulator followed by appropriate low-pass
filters (LPFs). Figure 2 illustrates this SDR based demodulator
approach, where for didactic reasons it has been assumed that
the received signal is not being corrupted by any impairment.
However, even in this case, the recovered sI (t) and sQ (t)
are not perfectly identical to the corresponding signals in the
modulator given in Fig. 1, since the LPFs are not capable of
eliminating the harmonic spurious resulting from the down-
conversion from passband to baseband, and other distortions
that may have been caused by hardware impairments and
imperfections like phase noise, IQ phase and amplitude im-
balances, DC-offset and nonlinear transfer characteristics of
some device in the signal path [15].

Fig. 2. Simplified block diagram of an SDR demodulator. The block marked
in dashed line is usually referred to as the IQ demodulator.

In Fig. 2, the scaling of 2 and −2 in the cosine and sine
carriers compensate for the reduction to the half amplitude
due to the IQ demodulation, and to the minus sign in the
generation of the passband signal according to (9). The output
of the diagram is the information-bearing digital or analog
signal that is delivered to the destination.

Similarly to the case of an SDR transmitter, the spectrum
translation from passband to baseband in the receiver, which is
performed by the analog sine and cosine carrier demodulations
in Fig. 2, can be made directly or in two steps, from passband
to IF and then from IF to baseband. When the first option is
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adopted, a direct-conversion receiver [16] takes place. In the
SDR context, the direct or indirect translation to baseband is
often implemented in the digital domain by a digital down-
converter (DDC) [13, Ch. 13] [14, Ch. 12] [17]1.

Thus, it can be concluded that, in the worst case, only the
radio-frequency (RF) part of the SDR must be implemented
in conventional hardware with the present technology2.

B. The complex envelope in simulations

One of the simplest ways to understand sampling, specif-
ically the simplest case of uniform instantaneous sampling3,
consists of realizing that sampling in time produces replicas of
the spectrum of the original signal, located at integer multiples
of the sampling frequency. Mathematically, let x(t) denote the
signal to be sampled. The sampled signal xs (t) is then

xs (t) = x(t)
∑∞

k=−∞
δ(t − kTs ), (17)

where δ(t) is the impulse function or delta de Dirac, and
Ts = 1/ f s is the sampling period, with f s being the sampling
frequency. Given that the Fourier transform of an impulse
train in time is an impulse train in the frequency domain,
and that a multiplication in the time domain corresponds to
a convolution in the frequency domain [5, p. 115], it follows
that the spectrum of xs (t) is

Xs ( f ) =
1
Ts

∑∞

k=−∞
X ( f − k f s ), (18)

where X ( f ) is the Fourier transform of x(t).
Figure 3 illustrates the sampling process in the frequency

domain for a baseband signal, while Fig. 4 refers to a passband
signal. The baseband signal is assumed to be confined4 in
(0, fU ) with fU = 10 Hz, and the passband signal is assumed
to be within ( fL, fU ), for fL = 90 Hz and fU = 110 Hz. Both
signals are sampled at 80 samples per second.

In order to determine the location of the spectral replicas
associated to the sampled signals, one firstly needs to remem-
ber that negative frequencies does not exist fiscally, but must
be taken into account in signal analyzes. Hence, the center of
the spectrum of both the baseband and the passband signals
is 0 Hz (considering the negative halves that are not shown).
The centers of the replicas in the sampled signal spectrum are
located at k f s = k80 Hz, for k = 0, 1, 2, 3, 4, 5 in the baseband
signal, and for k = −1, 0, 1, 2, 3, 4, 5, 6 in the passband signal.

1The author of [17] has other quite interesting articles closely related to
signal processing for SDRs. These articles can be accessed in [18].

2The processing of RF or IF signals in the digital domain demands high
speed digital-to-analog (D/A) and A/D converters, but it is already feasible
at present in cases of not too high frequencies. As technology evolves, these
devices will be pushed more and more towards the antennas of the wireless
communication systems. Ideally, an SDR transmitter generates the signal to be
applied to the power amplifier, which is connected to the transmitting antenna,
and the SDR receiver samples and subsequently processes the signal coming
from the low-noise amplifier (LNA) connected to the receiving antenna

3Uniform sampling means that the signal samples are equally spaced in
time [9, p. 247]. Instantaneous sampling is the result of multiplying the signal
to be sampled by an impulse train.

4The uncertainty principle of the Fourier transform [19] states that it is not
possible to concentrate a function both in time and frequency. In other words,
if it is needed to confine the signal spectrum in a given finite bandwidth, then
the signal duration must go to infinite; analogously, if a signal is confined in
a given finite time interval, then its bandwidth is infinite.

In Figs. 3(b) and 4(b), the numbers close to each spectral
replica are the indexes k, and the letters denote the negative
(n) and the positive (p) half of the original spectra given in
(a). The frequency range of analysis in the present example is
[0, 400] Hz, mimicking a simulation frequency of 800 Hz.

Fig. 3. Baseband sampling process in the frequency domain. Original
baseband signal spectrum (a); sampled signal spectrum @ fs = 80 Hz (b).

A first interesting aspect to be noticed in Figs. 3 and 4 is
that the original spectra are present in the sampled signals,
meaning that the original baseband or passband signals can
be recovered by proper lowpass and bandpass filtering, respec-
tively. However, tanking into account that the signal spectrum
is not strictly confined in practice, some sort of aliasing5 will
always remain. The smaller the sampling rate, the more severe
will be the aliasing distortion.

Fig. 4. Passband sampling process in the frequency domain. Original passband
signal spectrum (a); sampled signal spectrum @ fs = 80 Hz (b). Better viewed
in color. Each color refers to a replica.

The uniform sampling theorem applied to baseband signals
can be easily derived from Fig. 3. Notice that no aliasing
occurs if the sampling frequency is equal to or larger than
twice the upper limit of the baseband spectrum, that is

f s ≥ 2 fU . (19)

5Aliasing refers to the superposition of the spectral replicas, which causes
distortion in the desired portion of the spectrum. This distortion is usually
referred to as aliasing distortion.
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For the example in analysis, it means that any f s ≥ 20 Hz
is theoretically allowed in the case of the baseband signal.

The sampling theorem applied to a passband signal is
considerably more intricate to derive. From [6], the condition
of uniform sampling rates in this case is given by

2 fU
n
≤ f s ≤

2 fL
n − 1

, (20)

where n is the integer given by

1 ≤ n ≤
⌊

fU
B

⌋
, (21)

where B = fU − fL is the passband signal bandwidth, and bxc
is the largest integer no greater than x.

One can notice that the sampling frequency condition
f s ≥ 2 fU , which is attained when n = 1 in (20), specializes to
the baseband sampling theorem. In other words, the baseband
sampling theorem can be applied to passband signals, meaning
that, for the example being discussed in this subsection,
f s ≥ 220 Hz, whose minimum is eleven times greater than
the minimum in the case of the baseband signal.

Now consider that the lower limit of a passband spectrum
is an integer multiple of the bandwidth, that is, fL = cB. If
c = n − 1, it follows from (20) that f s = 2B, meaning that a
passband signal s(t) can be sampled at a rate as low as the
minimum sampling rate required for the baseband signal s̃(t).
However, the lower the sampling rate applied to s(t), the more
stringent are the requirements to avoid aliasing when compared
to sampling s̃(t), since the spectral replicas of the sampled
passband signal get closer to each other faster than the ones
associated to the baseband signal as the sampling frequency
decreases, a phenomenon that becomes more pronounced for
larger fL/B; see [6, Fig. 4]. This is readily noticed if the
gaps between the spectral replicas in Figs. 3(b) and 4(b) are
compared (recall that both the baseband and the passband
signals were sampled with the same rate in this example).

Thus, in practice, the simulation sampling rate applied to
s(t) must be sufficiently larger than the minimum one used
to sample s̃(t). This can be accomplished, for example, by
applying the condition (20) assuming a guard band on the sides
of the passband spectrum, as if it had a larger bandwidth (i.e.,
the reference values fL and fU are shifted to the left and to the
right, respectively, without modifying the original spectrum).
A detailed analysis of this and other concepts associated to
the passband sampling are given in [6] and [9, Ch. 8].

IV. GENERALIZED MODULATOR AND MAXIMUM
LIKELIHOOD DEMODULATOR

The signal-space representation theory [5, Ch. 5] is one of
the most useful tools for developing and analyzing digital com-
munication systems. It is grounded on the representation of a
real symbol si (t), i = 1, . . . , M , confined in the interval T (i.e.,
si (t) is an energy signal) and belonging to a given passband
or baseband signaling, by means of a linear combination of
orthonormal (i.e., orthogonal and normalized to unit energy)
base functions φk (t), k = 1, . . . , N , according to

si (t) =
∑N

k=1
sikφk (t), (22)

where the coefficients sik are computed using

sik =
∫ T

0
si (t)φk (t)dt. (23)

These coefficients can be interpreted as coordinates that can
be grouped into the vectors si = [si1 si2 ... siN ]T, where the
upper-script T denotes transposition. These vectors are usually
referred to as signal-vectors, which define points in the N-
dimensional Euclidean space. These points form the so-called
signal constellation, which is the widely known geometric
representation of digital communication signals.

The generalized modulator for any M and N , applicable
to several modulation schemes, can be constructed according
to (22), yielding the diagram shown in Fig. 5. The serial data
bits {b} are grouped in blocks with log2 M bits that are serial-
to-parallel (S/P) converted. These paralleled bits are converted
into N coefficients by means of the look-up table (LUT). The
subsequent blocks simply realize the operation (22).

Fig. 5. Generalized modulator based on the signal-space theory [5, p. 371].

The maximum likelihood (ML) receiver [5, p. 384] is
the one that minimizes the probability of a symbol error if
the symbols are equally likely (which is the most common
situation in practice). Hence, the ML receiver is optimum in
this sense and is considered herein.

The derivation of an ML receiver is strongly dependent
of the channel, mainly in what concerns the channel state
information available to the receiver to feed the symbol
decision process [20, Ch. 7]. For instance, a variety of receiver
structures and performances can be achieved by adopting
different combinations of channel state knowledge relating to
the amplitude, phase, and delay parameter vectors associated
with wireless fading channels [20, p. 189].

Unless otherwise mentioned, here it is considered the co-
herent ML receiver structure designed for the additive white
Gaussian noise (AWGN) channel6, which suffices for the
purpose of this introductory text. More advanced material can
be found in [20], especially in its Chapter 7.

If a transmitted symbol si (t) is corrupted by additive
white Gaussian noise w(t), that is, x(t) = si (t) + w(t), the
generalized ML receiver is the one depicted in Fig. 6. The N
correlators realize (23), with the difference that the samples

6The adoption of the pure AWGN channel model seems to be an oversim-
plification, but the digital communication theory tells that receivers designed
for this channel can operate satisfactorily in fading environments if some sort
of signal, transmitter or receiver diversity is applied, since diversity acts like
a Gaussianization of the fading, i.e, a reduction of its variability [20, Ch. 7].
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xk of their output signals are the corrupted versions of sik
due to w(t), that is, xk = sik + wk , where wk is the result of
passing w(t) through the k-th correlator.

It must be emphasized that in the present demodulator and
in subsequent ones, the integrators that form the correlators
are of the type integrate-and-dump, meaning that their output
signals are reset to zero after each integration interval of T
seconds. Moreover, the subsequent sampling processes, which
are made at a rate of 1/T samples per second, are of the type
sample-and-hold (S&H), meaning that a given sample value
is retained up to the next sampling instant.

The values of xk in Fig. 6 are packed by the scalar-to-vector
(S/V) block into the received vector x, which is subsequently
operated by inner products with the M signal-vectors. Half
of the i-th symbol energy is then subtracted off the result of
the i-th inner product, which acts as an energy compensation
process [5, Sec. 5.8]. The estimated symbol m̂ is the one whose
index corresponds to the largest energy-compensated quantity,
which is equivalent to deciding in favor of the constellation
signal-vector si closest to the received vector x in terms of
Euclidean distance. The estimated symbol is finally mapped
back into the estimated data bits b̂ that it represents.

The above passband generalized modulator and demodulator
structures can be adapted to the design of many complex
envelope based modems. To this end, firstly let (22) be written
according to the complex envelope representation (7), yielding

Re
[
s̃i (t)e j2π fc t

]
=

∑N

k=1
sikRe

[
φ̃k (t)e j2π fc t

]

= Re
[∑N

k=1
sik φ̃k (t)e j2π fc t

]
, (24)

where s̃i (t) and φ̃k (t) are the complex envelopes of si (t) and
φk (t), respectively7. Hence, it immediately follows that

s̃i (t) =
∑N

k=1
sik φ̃k (t), (25)

where

sik =
1
2

Re
[∫ T

0
s̃i (t)φ̃∗k (t)dt

]
. (26)

This last result comes from the fact that, given any two real
signals z(t) and u(t), and their complex envelopes z̃(t) and
ũ(t), respectively, then [21, p. 60]∫ b

a

z(t)u(t)dt =
1
2

Re
[∫ b

a

z̃(t)ũ∗(t)dt
]
. (27)

Equation (25) unveils that the complex envelope based
generalized modulator can be constructed according to the
block diagram shown in Fig. 7, whose operation is analogous
to the modulator shown in Fig. 5.

Regarding the complex envelope based demodulator, firstly
recall from the signal-space theory that the inner products xTsi
realized by the demodulator shown in Fig. 6 are equivalent to
the correlations between x(t) and si (t). Thus, in light of (27),
these inner products can be expressed as

xTsi =
1
2

Re
[∫ T

0
x̃(t) s̃∗i (t)dt

]
, (28)

7One must be aware that no normalization constant [21, p. 58] is being used
in the present analysis, which means that the energy of a complex envelope is
twice the energy of the corresponding passband function. As a consequence,
the base functions φ̃k (t ) form an orthogonal set with energy equal to 2 joules.

where x̃(t) = s̃i (t) + w̃(t), and where x̃(t), s̃i (t) and w̃(t) are
the complex envelopes of the real signals x(t), si (t), and w(t),
respectively8. The remaining blocks of the complex envelope
based demodulator are kept equal to the corresponding ones
depicted in Fig. 6.

Alternatively, and more conveniently, the complex envelope
based generalized demodulator can be constructed according
to Fig. 8, where the structure shown in Fig. 6 has been
maintained, with the correlators replaced by their complex
envelope based versions. In this diagram and in subsequent
ones, the single-line connections carry real signals, whereas
the double-line connections carry complex-valued signals or
vector-valued samples, depending on the context.

In practice, a connection carrying a complex-valued quantity
is simply a two-way wiring, one carrying the real part and the
other carrying the imaginary part (typically, no j is necessary).
However, one must be aware when operating with such quan-
tities, which must be done in the same way that a complex
number is handled. For example, the multiplication between
the real quantities (a, b) and (c, d), which is equivalent to
(a + jb)(c + jd), yields two real values, namely (ac − bd)
corresponding to the real part of the result, and (ad + bc)
corresponding to its imaginary part. Similarly, the convolution
(a+ jb) ∗ (c+ jd) yields (a ∗ c− b ∗ d) for the real part of the
result and (a ∗ d + b ∗ c) for the imaginary part.

V. COMPLEX ENVELOPE BASED MODEMS

This section presents the complex envelopes of some basic
digital modulated signals, followed by block diagrams of the
corresponding modems with coherent detection (except oth-
erwise noted). Besides providing hints on how to implement
simulations of complex envelope based modems, the section
also contains the fundamentals for applying the associated
theory in the design of SDR modems. Moreover, the presenta-
tion approach via block diagrams facilitates understanding and
potentially facilitates the use of powerful software tools like
the VisSim/Comm [22], the Matlab Simulink [23], [24], and
the GNU Radio [25], [26], since the graphical user interface
of these tools resembles a block-like structure.

A. M-ary frequency-shift keying (MFSK)

The MFSK is one of the most didactic-appealing modu-
lations from the perspective of the complex envelope theory,
since it can be exploited to verify several relations established
in Section II. This is the main reason for addressing the MFSK
modulation in the first place.

An MFSK signal is characterized by M orthogonal symbols
with equal energies E, formed by M tones with frequencies
spaced by an integer multiple of half of the symbol rate
R = 1/T , where T is the symbol duration, in seconds [5, pp.
450-507]. When the separation between adjacent tones is 1/T ,

8Strictly speaking, the white noise w (t ) is not a passband signal, since
it violates the definition regarding the spectrum concentration in a given
bandwidth much smaller than the center frequency. Nonetheless, if it is
assumed that the white noise is flat over all frequencies of interest in the
passband signal si (t ) and zero elsewhere, w (t ) can be adequately modeled
as a passband noise.
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Fig. 6. Generalized ML demodulator over the AWGN channel, based on the signal-space theory [5, p. 384].

Fig. 7. Generalized complex envelope based modulator.

the implementation of the modulator and the demodulator
becomes easier, since it is possible to guarantee a continuous-
phase modulated signal by simply switching among the M
tones, and it is possible to implement low-complexity symbol-
by-symbol coherent or non-coherent detection schemes [5].
Hence, adopting this separation of 1/T , the i-th MFSK symbol
can be written as

si (t) =

√
2E
T

cos
(
2π fc t +

πai

T
t
)
, (29)

for i = 1, . . . , M , where ai ∈ {±1,±3, . . . ,±(M−1)}, and fc is
the center frequency, which is the average of the tones whose
frequencies are f i = fc + ai/(2T ) Hz.

Applying the golden rule for determining the complex
envelope of a passband signal, as described at the end of
Section II, it follows that

si (t) = Re


√
2E
T

e j
πai
T t e j2π fc t


,

meaning that the complex envelope of this MFSK signal is

s̃i (t) =

√
2E
T

e j
πai
T t, (30)

or, equivalently,

s̃i (t) =

√
2E
T

cos
(
πai

T
t
)
+ j

√
2E
T

sin
(
πai

T
t
)
, (31)

from where the in-phase and the quadrature signals sI (t) and
sQ (t) promptly arise according to (8).

The binary FSK (BFSK or 2FSK) is considered hereafter,
since its simplicity facilitates presentation and understanding.
Nevertheless, this simplified approach can be generalized to
any M > 2 with little effort.

The complex envelope of the 2FSK symbols with energy
E = Eb and duration T = Tb is readily obtained from (31)
using ai ∈ {±1}, which results in

s̃i (t) =

√
2Eb

Tb
cos

(
π

Tb
t
)
+ j (−1)i

√
2Eb

Tb
sin

(
π

Tb
t
)
, (32)

where Eb is the average energy per bit and Tb is the bit
duration, and where the relations cos(±x) = cos(x) and
sin(±x) = ± sin(x) have been applied.

If the tone with lower frequency is associated to a data
bit 0, the corresponding symbol is s̃1(t) and its frequency
is f1 = fc − 1/(2Tb ) hertz. Similarly, s̃2(t) has the higher
frequency f2 = fc+1/(2Tb ) hertz, representing a bit 1. Notice
that the tone separation is 1/Tb hertz.

Based on (32), Fig. 9 depicts the resultant 2FSK complex
envelope based modulator.

The 2FSK complex modulator can be also constructed in
light of (25) or according to Fig. 7, applying s̃i (t) = si1φ̃1(t)+
si2φ̃2(t), for i = 1, 2, where s11 =

√
Eb , s12 = 0, s21 = 0 and

s22 =
√

Eb , using the base functions determined a little ahead
in this subsection. In this case, the coefficients s11 and s12 are
simultaneously generated when an input data bit 0 is applied
to the modulator input, whereas s21 and s22 are generated for
an input data bit 1.

Figure 10 shows waveforms of the 2FSK in-phase com-
ponent sI (t) =

√
2Eb/Tb cos(πt/Tb ) and the quadrature com-

ponent sQ (t) = ±
√

2Eb/Tb sin(πt/Tb ) during 10 random bits,
as well as the signal phase trajectory and the scatter-plot (xy
plot) of sI (t) versus sQ (t). From this figure it can be seen
that the phase of the modulated signal changes continuously
from symbol to symbol. It also illustrates the fingerprint of
any FSK modulation, which is a circular scatter-plot.

The complex envelope based MFSK demodulator can be
constructed according to Fig. 8. However, owed to the fact
that the MFSK symbols form an orthogonal set, it means that
N = M and, as a consequence, the demodulator will have
M correlators followed by M inner products. The M base
functions that feed the correlators are simply the normalized
versions of the M symbols. This normalization is to unit
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Fig. 8. Generalized complex envelope based ML demodulator over the AWGN channel.

Fig. 9. 2FSK complex envelope based modulator considering a tone separa-
tion of 1/Tb Hz.
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sQ(t)

sI(t) t/Tb

phase trajectory sI(t) vs sQ(t)
scatter-plot

Fig. 10. Complex envelope, phase trajectory and scatter-plot of a 2FSK signal,
considering the tone separation of 1/Tb Hz. Better viewed in color.

energy in the case of φk (t), doubling in the case of φ̃k (t),
and is made by dividing si (t) or s̃i (t) by

√
E.

It follows from (29), using the golden rule with M = 2,
or directly from (32), that the complex envelopes of the base
functions in the case of the 2FSK modulation are

φ̃1(t) =

√
2

Tb
cos

(
π

Tb
t
)
− j

√
2Eb

Tb
sin

(
π

Tb
t
)
,

φ̃2(t) =

√
2

Tb
cos

(
π

Tb
t
)
+ j

√
2Eb

Tb
sin

(
π

Tb
t
)
.

Applying (28), the outputs of the inner products in the
demodulator given in Fig. 8 become

xTsi =
√

E
2

Re
[∫ T

0
x̃(t)φ̃∗i (t)dt

]
.

Notice from this result that the inner products and the
correlations with the base functions are redundant due to
the fact that their results are a scale factor of one another.
Moreover, since the MFSK symbols have equal energy, there
is no need for making the subtractions of half their energies.
Hence, the demodulator can be constructed by correlating
the received signal with the complex conjugate of the base
functions or with any scaled versions of them, and applying
the results directly to the block that decides in favor of the
symbol corresponding to the index of the largest result.

Thus, the complex envelope based 2FSK demodulator can
be implemented according to Fig. 11, where the largest be-
tween y1 and y2, which are scaled versions of x1 and x2,
respectively, is found by subtracting y2 from y1 and comparing
the result with zero.

Fig. 11. Complex envelope based 2FSK demodulator considering a tone
separation of 1/Tb Hz.

Another interesting simplification can be made in the
complex envelope based 2FSK demodulator. Notice that the
transmitted signals given in (32) differ only in their imaginary
parts, which means that the demodulator can be built by
correlating the imaginary part of x̃(t) with sin(πt/Tb ) and
comparing the result with zero, as illustrated in Fig. 12.

Fig. 12. Complex envelope based 2FSK demodulator alternative to Fig. 11.
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This alternative yields the same performance of the de-
modulator given in Fig. 11. In order to verify this statement,
assume Tb = 1 and Eb = 1/2 without loss of generality, which
in (32) yields s̃i (t) = cos(πt) + j (−1)i sin(πt) = e j (−1)iπt .
Additionally, consider that w̃(t) = wI (t)+ jwQ (t), where wI (t)
and wQ (t) are sample functions of a lowpass AWGN process,
each with power spectral density (PSD) of N0/4 watts/hertz.
If the scaled base functions applied to the correlators in Fig. 9
are φ̃i (t) = e j (−1)iπt , it means that their energy are unitary.
In this case, the variance of the noise present in y1 and
y2 is N0/4, implying that the noise variance in y is N0/2.
The means ȳ1 and ȳ2 are conditioned on the transmitted
signal. If it is s̃1(t), then ȳ1 = Re[

∫ 1
0 e− jπt e jπtdt] = 1 and

ȳ2 = Re[
∫ 1

0 e− jπt e− jπtdt] = 0. Analogously, if the transmitted
signal is s̃2(t), then ȳ1 = 0 and ȳ2 = 1. Hence, ȳ ∈ {±1}.

The bit error probability can be computed from the dif-
ference d between the two means of y, which is 2, and the
variance σ2 of y, which is N0/2, applying [5, p. 392],

Pb =
1
2

erfc
(

d
√

8σ2

)
,

yielding Pb = (1/2)erfc(1/
√

N0) for the demodulator depicted
in Fig. 11.

Regarding the demodulator shown in Fig. 12, given that the
noise wQ (t) has a PSD of N0/4 watts/hertz and the energy of
sin(πt) is 0.5 joule, the variance of the noise component in y

turns out to be N0/8. In terms of means, if the transmitted
signal is s̃1(t), then ȳ = −

∫ 1
0 sin(πt) sin(πt)dt = −0.5. If the

transmitted signal is s̃2(t), then ȳ =
∫ 1

0 sin(πt) sin(πt)dt = 0.5.
Hence, ȳ ∈ {±0.5}. Thus, the bit error probability of this
demodulator is also Pb = (1/2)erfc(1/

√
N0).

B. Gaussian frequency-shift keying (GFSK)

Likewise the MFSK, the GFSK modulation exhibits inter-
esting features that go from its mathematical model to the
structures of the modulator and the demodulator, which are
welcome to broaden the scope of this tutorial.

The GFSK applies a low-pass Gaussian pulse-shaping filter
to the baseband symbol stream before continuous-phase FSK
modulation, aiming at reducing the side-lobes of the PSD.
It is adopted, for example, by the Bluetooth standard [27],
[28], and is closely related to the Gaussian minimum-shift
keying (GMSK) modulation [5, p. 521], which is the basic
scheme adopted in the Global System for Mobile (GSM)
standard. While the GMSK is binary and typically uses a
modulation index h = ∆ f T = 0.5, and a bandwidth by symbol
duration product BT = 0.3, the GFSK is more flexible, for
example adopting h = 0.5 and BT = 0.5 for the Bluetooth
low energy (LE) standard, and h = 0.32 and BT = 0.5 or
BT = 0.4 for the Bluetooth basic rate and enhanced data rate
(BR/EDR) standards, respectively. In the above parameters,
∆ f is the frequency difference between the modulation tones,
and B is the −3 dB bandwidth of the Gaussian filter. Another
characteristic of the GFSK modulation is that it can carry more
than 2 symbols. For example, the Bluetooth standard adopts
2GFSK for 1 Mbit/s connections, and 4GFSK for 2 Mbit/s.

The GFSK signal can be expressed by means of the general
form of an angle modulated9 signal, that is,

s(t) =

√
2E
T

cos
[
2π fc t +

πh
T

∫ t

−∞

b(u)du
]
, (33)

where h is the modulation index and b(t) is given by

b(t) =
∑∞

n=−∞
ang (t − nT ),

and where an is a zero-mean multilevel sequence (bi-level
in the 2GFSK and four-level in the 4GFSK). The function
g(t) is a pulse with Gaussian-shaped rising and falling edges
that results from the convolution between an unity-amplitude
rectangular pulse of duration T and a Gaussian low-pass filter
whose impulse response is

h(t) =

√
2B2π

ln 2
exp

(
−

2π2B2t2

ln 2

)
.

The effect of filtering is to smooth the phase shifts10

associated to the frequency shifts. The product BT controls the
trade-off between reducing the PSD side-lobes and penalizing
the performance due to the intersymbol interference (ISI)
caused by the time spread inherent to the Gaussian-filtered
pulses [5, p. 523]. A large BT is associated to a small time
spread, higher PSD side-lobes and better performances. A
small BT is associated to a large time spread, lower PSD
side-lobes and worse performances. Practical considerations
regarding the Gaussian pulse shaping are reported for instance
in [29]. Other aspects regarding the implementation of the
GFSK modulation and demodulation are addressed in [30].

In the binary GFSK, which is considered hereafter, it is
adopted E = Eb , T = Tb , and an = ±1 in (33) such that
an = +1 for the data bit 1 and an = −1 for the data bit 0.
Applying the golden rule to (33), the complex envelope of the
binary GFSK signal is found to be

s̃(t) =

√
2Eb

Tb
e j (πh/Tb )

∫ t
−∞

b(u)du, (34)

from where sI (t) and sQ (t) are easily obtained based on (10),
(15) and (16), giving rise to the binary GFSK complex
envelope based modulator shown in Fig. 13, which can be
seen as a direct synthesis of (34).

Fig. 13. Complex envelope based binary GFSK modulator.

9Notice that if h = 1 in (33) and BT = ∞ (i.e., b(t ) is a sequence of
multilevel rectangular pulses of duration T ), s(t ) specializes to the MFSK
signal given in (29). Moreover, notice that an angle modulation is nonlinear,
since it violates the principle of superposition of linear systems [21, p. 72].
Yet, if b(t ) in (33) is an analog signal, a frequency modulation (FM) results.

10Recall that the instantaneous frequency of a signal is the derivative of
the signal phase evolution over time, that is, f = (1/2π)dθ (t )/dt hertz, if
θ (t ) is expressed in radians.
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Figure 14 shows waveforms of the in-phase and the quadra-
ture components of a binary GFSK signal during 10 random
bits, as well as the signal phase trajectory and the scatter-plot
of sI (t) versus sQ (t). It can be seen that the phase trajectory
is continuous, likewise in the 2FSK modulation illustrated in
Fig. 10, but is smoother than the one associated to the 2FSK,
a consequence of the Gaussian-filtering before frequency-shift
keying. It is also interesting to notice that the fingerprint of the
GFSK modulation remains a circular scatter-plot, as expected.

0 2 4 6 8 10

sQ(t)

sI(t) t/Tb

phase trajectory sI(t) vs sQ(t)
scatter-plot

Fig. 14. Complex envelope, phase trajectory and scatter-plot of a binary
GFSK signal, for BTb = 0.5 and h = 0.32. Better viewed in color.

The generation of a GFSK signal based directly on the
generalized complex envelope modulator shown in Fig. 7 is
not possible because the need of maintaining phase continuity
in the modulated signal independent of h. Analogously, the
construction of the GFSK demodulator does not follow the
structure depicted in Fig. 8.

There are several GFSK demodulation structures and algo-
rithms proposed in the literature; see for instance [31] and
references therein. In the context of Bluetooth, most of then
adopt non-coherent detection due to the need for low cost de-
vices, for satisfactory performance with the frequency-hopping
scheme, and to cope with different modulation indexes.

Here it is considered a phase-shift discriminator for de-
modulation, which basically reverts the operations established
in (34). However, the performance of this solution may be poor
due to the high levels of ISI produced by the pulse shaping,
especially when BT is small. High performance penalties also
may result if h is small, since this situation reduces the ability
of discriminating the frequency shifts in the received signal.
To improve performance, the phase-shift discriminator, or any
other demodulation processes, often requires to be comple-
mented with some sort of subsequent detection algorithm [31].
The optimum one, in the sense of minimizing the probability
of deciding in favor of a wrong symbol sequence, is the
maximum likelihood sequence detection (MLSD) [32].

Figure 15 presents the complex envelope based GFSK
demodulator with a phase-shift discriminator. Considering a
noiseless complex received signal for clarity, the leftmost
block splits it in the real and imaginary parts, and the arctan
operation gives a quantity proportional to the phase shift
evolution over time, which corresponds to the right-hand side
of the argument of the cosine in (33). The derivative yields
a signal proportional to b(t), which is the Gaussian-filtered
symbol sequence. The use of a simple slicer with a zero

threshold would suffice to recover the data bits from this
signal, but only for high BT values. Hence, the detection
algorithm in Fig. 15 aims at remembering that this additional
process might be needed to combat the high levels of ISI when
BT is small, or to improve frequency discrimination when h
is small, or both.

Fig. 15. Complex envelope based binary GFSK demodulator.

C. M-ary phase-shift keying (MPSK)

An MPSK signal is characterized by M symbols with equal
energies E, formed by setting M equally-spaced initial phases
of the carrier at the beginning of a symbol [5, pp. 422-434].
The i-th MPSK symbol, for i = 1, . . . , M , can be written as

si (t) =

√
2E
T

cos
(
2π fc t −

2(i − 1)π
M

)
, (35)

or using the complex envelope representation obtained through
the golden rule, which yields

si (t) = Re


√
2E
T

e− j
2(i−1)π

M e j2π fc t

,

from where

s̃i (t) =

√
2E
T

e− j
2(i−1)π

M . (36)

Using (9) with the in-phase and the quadrature components
extracted from (36), the MPSK symbols can be rewritten as

si (t) =

√
2E
T

cos
[ 2(i−1)π

M

]
cos(2π fc t)

+

√
2E
T

sin
[ 2(i−1)π

M

]
sin(2π fc t),

from where, using (22) with N = 2, that is, si (t) = si1φ1(t) +
si2φ2(t), it follows that the MPSK base functions are

φ1(t) =

√
2
T

cos(2π fc t),

φ2(t) =

√
2
T

sin(2π fc t).

Applying the golden rule, the corresponding complex en-
velopes can be found to be

φ̃1(t) =

√
2
T
,

φ̃2(t) = − j

√
2
T
.

Notice, once again, that the energy of the complex envelope
of a base function is twice the energy of the corresponding
passband function.

The quaternary PSK (QPSK or 4PSK) modulation is con-
sidered hereafter as an exemplifying case. The extension to
M > 4 is quite straightforward.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 35, NO.1, 2020. 44

The 4PSK modulator can be constructed in light of Fig. 7
and the above results, yielding the diagram shown in Fig. 16.

Substituting i = 1, 2, 3, 4 in (36), the complex envelopes of
the 4PSK symbols are obtained as

s̃1(t) =
√

2E
T , s̃2(t) = − j

√
2E
T ,

s̃3(t) = −
√

2E
T , s̃4(t) = j

√
2E
T ,

from where it can be noticed that all symbols have constant
amplitudes during a symbol interval T .

The bit-to-symbol mapping for minimum bit error prob-
ability must follow the Gray code, yielding 00 ⇔ s̃1(t),
01⇔ s̃2(t), 11⇔ s̃3(t), and 10⇔ s̃4(t).

Fig. 16. 4PSK complex envelope based modulator.

Using the complex symbols and base functions, the signal-
vector coefficients can be easily determined via (26), yielding

s11 =
√

E, s12 = 0,

s21 = 0, s22 =
√

E,

s31 = −
√

E, s32 = 0,

s41 = 0, s42 = −
√

E.

From these calculations and based on the generalized de-
modulator given in Fig. 8, the complex envelope based 4PSK
demodulator shown in Fig. 17 results. The constants that
do not affect performance have been removed. Specifically,
the multiplication by φ̃∗1(t) =

√
2/T in the upper arm of

the demodulator is not necessary if the multiplication by
φ̃∗2(t) = j

√
2/T in the lower arm is replaced by the multipli-

cation by j. Additionally, the signal-vector coefficients can be
normalized with respect to

√
E. Hence, the inner products of

the demodulator become zi = yTsi/
√

E = (y1si1 + y2si2)/
√

E,
for i = 1, 2, 3, 4, where y = x/

√
2/T . These relations yield

z1 = y1, z2 = y2, z3 = −y1 and z4 = −y2. Moreover, the
subtractions of half of the symbol energies are not necessary,
since these energies are all equal to one another. The rest of
the demodulator follows Fig. 8 with no further simplification.

D. M-ary quadrature amplitude modulation (MQAM)

An MQAM passband signal has phase and amplitude vari-
ations that result from the addition of amplitude-modulated
quadrature carriers. Hence, the i-th passband MQAM symbol,
i = 1, 2, . . . , M , can be written as

si (t) = si1

√
2
T

cos(2π fc t) + si2

√
2
T

sin(2π fc t), (37)

Fig. 17. 4PSK complex envelope based demodulator.

from where it can be noticed that MQAM and MPSK share
the same base functions, and that, applying (8) and (9),

s̃i (t) = si1

√
2
T
− j si2

√
2
T
. (38)

The coefficients si1 and si2 are chosen such that the MQAM
signal-vectors are not restricted to lie on a circle, which is
the case of MPSK symbols, but instead are placed on a grid
in the two-dimensional space, allowing for larger Euclidean
distances between symbols when compared to MPSK. These
larger distances can be translated into superior performances
of the MQAM with respect to MPSK [5, p. 450].

The MQAM family comprises two subcategories usually
referred to as square MQAM and non-square MQAM [5, pp.
434-449]. As the names suggest, square MQAM are those
with constellations having square shape, whereas non-square
MQAM constellations may assume any shape. A typical non-
square MQAM constellation has the shape of a cross and,
as such, receives the name of cross-constellation. Square
MQAM modulations carry an even number of bits per symbol,
that is M = 2n with n ≥ 2 and even. Non-square MQAM
modulations carry an odd number of bits per symbol, that is
M = 2n with n ≥ 3 and odd.

In principle, an MQAM complex envelope based modem
does not differ too much from its MPSK counterpart: the
modulators have two arms and apply the same base functions,
differing only in the implementation of the LUT. The demod-
ulators apply the same correlations with the complex conju-
gated base functions, with the difference that the subsequent
subtractions of half the symbol energies must be performed
in the case of the MQAM, since this modulation has symbols
with different energies. The rest of the demodulator is identical
in both modulations.

Nonetheless, the square MQAM can be implemented in an
alternative and interesting way, and for this reason it is further
explored in the sequel.

The pairs of signal-vector coefficients for the square
MQAM can be determined by the Cartesian product11 between
the set ψ and itself, where ψ = {(2u −

√
M − 1)(dmin/2)},

for u = 1, 2, . . . ,
√

M , and where dmin is the mini-
mum among the distances between all pairs of signal-
vectors. In other words, the square MQAM signal-vectors

11The Cartesian product between the sets X and Y is another set formed
by all the pairs (x, y) such that x ∈ X and y ∈ Y .
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are formed by independent coefficients si1 and si2. As a
consequence, the modulator can generate si1 from one group
of (log2 M)/2 = log2

√
M = log2 L input data bits, and si2

from the other group of log2 L bits, by means of baseband
L-ary pulse amplitude modulation (LPAM). This is illustrated
in Fig. 18, where the generalized complex envelope based
square MQAM modulator is presented.

Fig. 18. Square MQAM complex envelope based modulator.

The independence between si1 and si2 also allows for
estimating each group of log2 L bits independently, by means
of two LPAM detectors, as illustrated in Fig. 19. These
detectors compare y1 and y2, which are generated in the same
way that in the case of the MPSK demodulator, against L − 1
decision thresholds to estimate each group of log2 L bits.

It is worth considering the increased complexity of the
MQAM demodulator in comparison with the MPSK, credited
to the need for establishing the thresholds shown in Fig. 19
or, equivalently, the received symbol energies in the case of
the general MQAM demodulator directly devised from Fig. 8.

Fig. 19. Square MQAM complex envelope based demodulator.

As an example, consider a 16QAM constellation with
dmin = 2. Then, ψ = {2u − 5}, for u = 1, 2, 3, 4, yielding
ψ = {−3,−1, 1, 3}, which corresponds to the coordinates
of the 4PAM signal-vectors in each arm of the modula-
tor. Hence, (si1, si2) = (−3,−3), (−3,−1), (−3, 1), (−3, 3),
(−1,−3), (−1,−1), (−1, 1), (−1, 3), (1,−3), (1,−1), (1, 1),
(1, 3), (3,−1), (3,−1), (3, 1), (3, 3) are the coordinates of
the 16QAM signal-vectors. At the demodulator, assuming for
example that the channel attenuation in terms of magnitude is
6 dB, the means of y1 (which are equal to the means of y2)
will be −1.5,−0.5, 0.5 and 1.5 volts, meaning that the L−1 = 3
decision thresholds of the 4PAM detectors will be −1, 0 and
1 volt. These thresholds define L = 4 decision regions, each
corresponding to 2 bits in the upper arm and other 2 bits in
the lower arm, yielding the total of 4 estimated bits for each
16QAM received symbol.

E. Orthogonal frequency-division multiplexing (OFDM)

In OFDM [33], [34], the input data bit stream is split into Nc

lower rate streams that are mapped onto Nc modulation sym-
bols12 and transmitted simultaneously through Nc orthogonal
sub-carriers. An OFDM symbol is the result of multiplexing
in frequency the Nc modulation symbols.

The OFDM symbol has an increased duration with respect
to the single-carrier modulation symbol, being less sensitive to
the delay spread caused by multipath propagation channels [5,
Ch. 3]. As a consequence, ISI is reduced. Furthermore, the
bandwidth of each modulated sub-carrier can be made smaller
than the coherence bandwidth [5, p. 221] of the channel,
resulting in a flat fading per sub-carrier, thus facilitating the
equalization process at the receiver. Specifically, when a flat
fading per sub-carrier is achieved, the phase compensation and
magnitude equalization [35] operates in a sub-carrier basis and
is usually referred to as one-tap equalization.

Although the practical implementation of OFDM
transceivers makes use of discrete-time inverse and
direct fast Fourier transform (IFFT, FFT) operations [36],
here it is considered the continuous-time implementation
approach to maintain consistence with the complex envelope
based modems previously addressed, and to facilitate the
understanding of the mathematical modeling [5, pp. 647-656].

A passband OFDM symbol of duration T can be written as

s(t) =
∑Nc

k=1
Re

[
s̃k (t)e j2π f 〈c〉

k
t
]
,

where s̃k (t) = sI k (t)+ j sQk (t) is the complex envelope of the
M-ary modulation symbol conveyed by the k-th sub-carrier,
and f 〈c〉

k
is the k-th sub-carrier frequency. The set of all sub-

carriers is centered about the frequency fc , which is the center
of the passband OFDM signal spectrum. Writing the k-th sub-
carrier frequency fk such that the whole set of sub-carriers is
centered about zero, i.e., fk = f 〈c〉

k
− fc , then

s(t) = Re
[∑Nc

k=1
s̃k (t)e j2π fk t e j2π fc t

]
,

from where the complex envelope of an OFDM symbol can
be identified as

s̃(t) =
∑Nc

k=1
s̃k (t)e j2π fk t . (39)

The frequency of the k-th complex sub-carrier e j2π fk t in
baseband is fk = f1 + k/T , with f1 being the leftmost
(negative) frequency. The separation of 1/T between adjacent
sub-carriers guarantees that they are pairwise orthogonal, that
is,

∫ T
0 e j2π fk t e− j2π fi tdt = 0 for all i , k.

Based on (39) and on the concept of frequency multiplexing,
which starts with a serial-to-parallel conversion, the complex
envelope based OFDM modulator can be constructed accord-
ing to Fig. 20. The input data bits are converted into Nc paral-
lel streams, each carrying log2 M bits. Each group of log2 M
bits is mapped into the corresponding constellation symbol in
terms of complex envelope. Subsequently, the Nc modulation

12Although not rarely considered in the literature, OFDM is not a modu-
lation. Instead, it is a technique that multiplexes symbols generated from a
given modulation. Typical modulations used along with OFDM are MPSK
and MQAM.
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symbols are multiplexed by means of the orthogonal complex
exponentials. In this figure, the M-ary modulators are assumed
to be equal to one another, but in general each sub-carrier can
convey different numbers of bits per symbol, if needed.

Fig. 20. Complex envelope based OFDM modulator.

To recover the transmitted modulation symbols, the received
signal is correlated with 1/T times the complex conjugate of
the complex exponentials, as shown in Fig. 21. In the absence
of noise or any other impairment, i.e., x̃(t) = s̃(t), it can be
easily verified that

s̃k (t) =
1
T

∫ T

0
s̃(t)e− j2π fk tdt .

Subsequently, the Nc modulation symbols are estimated by
means of the appropriate complex envelope demodulator. The
estimated symbols are mapped back into the bits that they
represent, according to the modulation adopted, and then they
are demultiplexed to be delivered to the destination.

Fig. 21. Complex envelope based OFDM demodulator.

The blocks marked in dashed lines in Figs. 20 and 21 are the
ones typically implemented in practice by means of the IFFT
and the FFT operations, respectively, along with the necessary
A/D, D/A and filtering.

Another typical signal processing operation made to form
the final transmitted signal in practice is the addition of a
nonzero guard interval to each discrete-time OFDM symbol
to protect the signal even more against ISI. The samples cor-
responding to this guard interval are removed at the receiver.

As a closing-section highlight, it is worth remembering that,
for all modems previously considered, the real transmitted
signal can be generated in practice from the in-phase and
the quadrature components sI (t) and sQ (t) of the complex
envelope based symbols by means of the IQ modulator shown
in Fig. 1. This highlight is relevant for the reader to review the
connection of the complex envelope modems with the concept
of software-defined radios. Analogously, the in-phase and the
quadrature components of the received signal can be recovered
by means of the IQ demodulator shown in Fig. 2.

VI. CASE STUDY: SIMULATION OF A 4PSK MODEM
OVER A RAYLEIGH FADING CHANNEL

In this Section, the 4PSK complex envelope modem dis-
cussed in Subsection V-C has been selected as a representative
case for performance analysis via computer simulation.

The simulation has been implemented in the VisSim/Comm
software [22], and its diagram is shown in Fig. 22. Random
data bits are generated at 1 bit/s, feeding the 4PSK complex
envelope modulator, whose internal construction is shown in
Fig. 23. This construction follows Fig. 16, for T = 2Tb = 2
seconds. The LUT simply converts each pair of paralleled
input bits into the amplitudes of sI (t) and sQ (t), which are
si1
√

2/T and −si2
√

2/T , respectively, for T = 2 seconds,
E = 1 joule, and i = 1, 2, 3, 4. The resultant LUT mapping is:
00⇒ (1, 0), 01⇒ (0,−1), 11⇒ (−1, 0), and 10⇒ (0, 1), re-
spectively. Since the simulation sampling frequency is f s = 5
Hz, each 4PSK symbol is represented by 10 samples, yielding
a signal-to-aliasing noise ratio of ≈ 16.78 dB [7, p. 88], which
is quite high to affect the performance assessment.

The 4PSK complex envelope signal goes through a mul-
tiplicative Rayleigh block-fading channel that mimics a slow
and flat fading [5, p. 211]. The construction of this channel
follows Fig. 24, where a case block selects between the pure
AWGN channel and the AWGN plus Rayleigh fading channel.
The Rayleigh random variable is sampled and held at the
symbol rate, guaranteeing a constant fading magnitude during
a whole symbol; this condition is necessary to verify the
simulation according to the theoretical symbol or bit error
probability, which subsumes such condition. The samples of
the Rayleigh random variable feed a magnitude-phase to com-
plex conversion block, with zero phase in order to simulate the
total phase rotation compensation made in coherent detection.

Subsequently to the multiplicative fading channel, the
AWGN block adds the thermal noise whose E/N0 is auto-
matically set according to the average complex signal power
P = 2E/T = 1 watt, and the symbol rate R = 0.5 sym-
bol per second. Five values of E/N0 are simulated, namely
3, 5, 7, 9, 11 dB, yielding Eb/N0 = 0, 2, 4, 6, 8 dB.

The bottom part of Fig. 22 is the complex envelope de-
modulator whose construction follows Fig. 17. It is worth
highlighting the exchange in position of the inputs 3 and 4
of the scalar-to-vector (S->V) block, which is a consequence
of the Gray symbol-to-bit mapping [5, p. 380]. The blocks
S->V, maximum vector element identification (maxElement)
and the subtraction by 1 ($1-1) compose the block that decides
in favor of the largest input in Fig. 17. The parallel-to-serial
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Fig. 22. VisSim/Comm diagram for simulating the 4PSK complex envelope modem over the pure AWGN and the AWGN plus Rayleigh fading channels.
The BER versus Eb/N0 graph is better viewed in color.

Fig. 23. VisSim/Comm diagram for the 4PSK complex envelope modulator.

Fig. 24. VisSim/Comm diagram for the Rayleigh block-fading channel.

block maps the estimated symbol index into the estimated
data bits, which are serially delivered to the bit error rate
(BER) estimation block, from which the BER versus Eb/N0
graph is plotted. Each BER estimate is computed from a fixed
preselected number of bit errors. The numbers of errors set in
the present simulation are 300, 200, 150, 100, 80, respectively
for Eb/N0 = 0, 2, 4, 6, 8 dB.

The estimated BERs over the AWGN and the Rayleigh
fading channels are plotted along with the corresponding
theoretical bit error probabilities. In the case of the AWGN
channel, the exact theoretical symbol error probability for the
MPSK modulation with coherent detection is given in [20,
Eqn. (8.23)], which for M = 4 specializes to

Ps =
1
π

∫ 3π/4

0
exp

(
−

Eb

N0sin2θ

)
dθ. (40)

The exact symbol error probability of coherent MPSK over
a slow and flat Rayleigh fading channel is given in [20, Eqn.
(8.113)], which for the 4PSK modulation yields

Ps =
3
4

{
1 −

4
3π

√
γb

1 + γb

[
π

2
+ tan−1

(√
γb

1 + γb

)]}
, (41)

where γb = E{α
2}Eb/N0 is the average signal-to-noise ratio

per bit, with E{α2} being the second moment of the fading
envelope, which is unitary in the simulation at hand.

Since the Gray mapping is adopted, the approximate theoret-
ical bit error probabilities that are plotted in Fig. 22 are given
by Pb = Ps/ log2 M = Ps/2, with Ps coming from (40) and
(41) for the AWGN and the Rayleigh channel, respectively.
The graph shows close agreement between the estimated BERs
and the associated theoretical curves, which validates the
simulation. A procedure similar to the one described in this
section can be used in the case of the remaining modems
considered in the previous section.

As a complimentary simulation result, Fig. 25 shows the
estimated PSD of the simulated complex envelope 4PSK signal
at the output of the modulator in Fig. 22. This PSD is
practically equal to the theoretical one [5, p. 431]. Notice that
the spectrum span goes from 0 to 2.5 Hz, a consequence of
the simulation sampling frequency f s = 5 Hz. Moreover, the
spectral nulls are located at integer multiples of 1/T , which
is consistent with the symbol rate R = 1/T = 0.5 symbol per
second. Additionally, observe that the spectrum is not confined
(unless by the natural simulation limit of f s/2), which is,
according to the uncertainty principle of the Fourier transform,
a consequence of the confined rectangular symbol waveform.

VII. FILTERING

There is not a single approach for filtering modulated signals
at the transmitter and at the receiver of a digital communication
system. At the transmitter, it can be made in baseband, acting
independently on sI (t) and sQ (t), or in passband, acting
on s(t), or both. In the former case, two LPFs are needed,
whereas in the latter case one band-pass filter (BPF) must
be applied. Since a LPF is often easier to design than its
band-pass counterpart, the adoption of baseband filtering is
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Fig. 25. Estimated power spectral density of the baseband 4PSK signal.

prevalent in practice. However, there are cases in which a BPF
is needed in addition to LPFs, for example when the modulated
signal goes through nonlinear amplification. The nonlinearity
produces spectral regrowth [5, p. 511], demanding additional
filtering to keep the power spectrum density compliant with the
specified radiated spectral mask. Filtering is also necessary for
pulse shaping in order to avoid ISI. A band-pass receive filter
is normally applied to limit the signal spectrum entering the
receiver. Low-pass receive filters, on the other hand, typically
are the twins of the transmit filters acting to control ISI. This
section explores these facets.

A. Mapping a passband filter response into baseband

From the complex envelope representation theory applied
to linear systems, it is known that if a passband filter impulse
response h(t) is written in the complex envelope form as
h̃(t), the complex envelope of the output signal, b̃(t), is
determined by an scaled convolution between the complex
envelope of the input signal, ã(t), and h̃(t) [10], [21]. Specif-
ically, b̃(t) = 1

2 [ã(t) ∗ h̃(t)]. Since ã(t) = aI (t) + jaQ (t),
h̃(t) = hI (t) + jhQ (t), and b̃(t) = bI (t) + jbQ (t), then

2bI (t) = aI (t) ∗ hI (t) − aQ (t) ∗ hQ (t),
2bQ (t) = aI (t) ∗ hQ (t) + aQ (t) ∗ hI (t),

meaning that four real convolutions are needed to compute the
real and the imaginary parts of a complex convolution.

Additionally, if H ( f ) =
∫∞
−∞

h(t)e− j2π f tdt is the fre-
quency response of a filter in passband form, the frequency-
domain complex envelope H̃ ( f ) = HI ( f ) + jHQ ( f ) can
be determined as follows: Since hI (t) = Re[h̃(t)]
and hQ (t) = Im[h̃(t)], then hI (t) = [h̃(t) + h̃∗(t)]/2 and
hQ (t) = [h̃(t) − h̃∗(t)]/(2 j). The Fourier transform of h̃∗(t) is∫∞
−∞

h̃∗(t)e− j2π f tdt =
[∫∞
−∞

h̃(t)e j2π f tdt
]∗
= H̃∗(− f ). Then,

HI ( f ) = 1
2 [H̃ ( f ) + H̃∗(− f )],

HQ ( f ) = 1
2 j [H̃ ( f ) − H̃∗(− f )],

finally yielding

H̃ ( f ) = 1
2 [H̃ ( f ) + H̃∗(− f )] + 1

2 [H̃ ( f ) − H̃∗(− f )]. (42)

Hence, if a BPF with frequency response H ( f ) is desired,
H̃ ( f ) is determined from (42), and h̃(t) = hI (t) + jhQ (t) is
computed from the inverse Fourier transform of H̃ ( f ). The
filtering of the complex envelope ã(t) = aI (t) + jaQ (t) is
then performed as illustrated in Fig. 26.

Fig. 26. Filtering the complex envelope ã(t ) = aI (t ) + jaQ (t ) of the real
passband signal a(t ).

B. Pulse shaping for zero ISI

The Nyquist criterion for baseband ISI-free transmission [5,
p. 312] states that if the impulse response of the system that
comprises the transmit filter, the channel, and the receive
filter has nulls at integer multiples of the symbol duration T ,
the samples collected at the output of the receive filter are
free from ISI. This is guaranteed if the channel is almost
distortionless in the transmitted signal bandwidth, and if the
overall frequency responses of the filters exhibit vestigial sym-
metry around 1/(2T ) hertz [5, p. 313]. Among the infinitely
many possibilities of satisfying this condition, the raised cosine
spectrum is the most used in practice. This means that the
transmit and receive filters must be of the type root raised
cosine (RRC), which is nothing more than the square-root of
the raised cosine spectrum. By doing so, not only the ISI is
handled, but also the white noise. This is owed to the fact that
the transmit filter acts as a pulse-shaping filter (PSF), and the
receive filter acts as a matched filter (MF) [5, p. 284].

Assuming that it is intended to apply low-pass PSFs at the
transmitter, there is no need for doing filtering like in the case
of Fig. 26. The in-phase and the quadrature signals can be
filtered independently, as illustrated by Fig. 27 in the context
of SDRs. This illustration is for didactic purposes only, since
in practice it is more convenient to implement the filters also in
the digital domain. Recall that it is also common to implement
the up-conversion, at least from baseband to IF, digitally.

Fig. 27. Simplified block diagram of an SDR modulator with baseband pulse
shaping. In practice, the PSFs are also implemented in the digital domain.

In Fig. 27 it is subsumed that sI (t) and sQ (t) are constant
during the symbol interval, since the role of the multiplications
by the impulse train is to generate impulse-like short duration
pulses at the input of the filters so that the output signal closely
approximates the impulse responses scaled by the amplitudes
of sI (t) and sQ (t). Nonetheless, if sI (t) and sQ (t) are not
constant during the symbol interval, as in the case of MFSK
signals for example, baseband filtering can still be performed,
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but this is usually the case for spectrum control only, not to
combat ISI.

It is interesting to realize that the receiving-end counterpart
of the modulator shown in Fig. 27 can benefit from the need
for matched filtering, which can be accomplished by replacing
the LPFs shown in Fig. 2 by filters identical to the PSFs used
in the modulator. However, in this case it shall not be intended
to recover sI (t) and sQ (t), but instead to have the samples of
the filters’ output signals free form ISI. Indeed, the outputs
of the MFs will not be equal to sI (t) and sQ (t) generated in
the modulator of Fig. 27, since these filters will unavoidably
produce considerable time spreading.

C. Pulse shaping in the generalized complex envelope modu-
lator and demodulator

Assume that the PSFs designed to combat ISI have identical
real impulse responses denoted by p(t). Following a reasoning
analogous to the one adopted in the case of Fig. 27, the
generalized complex envelope based modulator given in Fig. 7
is converted into the one shown in Fig. 28.

Fig. 28. Generalized complex envelope based modulator with pulse shaping.

If sI (t) and sQ (t) are constant within the symbol interval,
the PSFs acting on the signal-vector coefficients as shown in
Fig. 28 are not needed, and the process adopted in Fig. 7 can
be used instead, that is, sI (t) and sQ (t) are multiplied by an
impulse train and the results go through a pair of PSFs.

It must be emphasized that, even though the signal-vector
coefficients sik , i = 1, 2, . . . , M , k = 1, 2, . . . , N are determined
using energy signals, the linear combination (25) also applies
when the base functions are shaped by pulses lasting more
than the symbol interval, which is the case of RRC pulses and
other ones designed to prevent ISI. An immediate consequence
of such pulse shaping is that the demodulator must adopt an
MF replacing each correlator in order to capture the entire
received symbol energy.

From the digital communication theory, and according to the
modulator in Fig. 28, the MFs must have impulse responses
κp(τ − t)φ̃∗

k
(τ − t), where τ is a suitable delay enough for

producing causal filters, and κ is any nonzero scale factor.
Since the delay and the scaling do not affect performance,
from the mathematical viewpoint the impulse response of the
k-th MF can be written in the compact form p(−t)φ̃∗

k
(−t).

Taking into account that the MF and the correlator share the
same signal-to-noise ratio at the sampling instant, (27) can be

invoked again to conclude that the MF output samples are the
real part of the convolution between the complex envelope of
the input and the complex envelope of the system impulse
response. Hence, it follows that the observed vector elements
y1, y2, ..., yN , which are scaled versions of x1, x2, ..., xN

in the demodulator of Fig. 8, can be obtained by replacing
the correlators by MFs with impulse responses p(−t)φ̃∗

k
(−t),

yielding the generalized demodulator shown in Fig. 29. The
outputs of the MFs are sampled every T seconds, and the
results are processed in the same way that in the case of the
demodulator given in Fig. 8.

D. Filter design in the context of multirate systems

The implementation of SDRs often involves different sam-
ple rates in order to adequate the signal processing tasks to
the signal bandwidth in each part of the system, as well as to
improve performance, reduce the costs or facilitate the design
of some device or subsystem. Systems or devices that operate
with multiple sample rates are usually referred to as multirate
systems or multirate devices [9, Ch. 10]. Examples are the
DUC and DDC mentioned in Section II, and the important
class of multirate digital filters [13].

Although the design and implementation of digital filters in
the context of SDRs is beyond the scope of this tutorial, it
might be useful to the reader to know at least which are, and
where to find the fundamentals behind such topic.

The theory about designing digital filters is commonly
addressed in specific tutorial articles or books [37], [38], and in
books on digital (or discrete-time) signal processing [39]. On
the other hand, one of the most important concepts associated
to the implementation of multirate systems or devices, espe-
cially digital filters, is the sample rate conversion by means
of down-sampling and up-sampling [13]. In simple terms, the
former removes samples of the signal, as if it were sampled
in a lower rate, and the latter inserts interpolated samples in-
between the original ones, as if the signal were sampled in
a higher rate. Down-sampling and up-sampling often make it
simpler the implementation of digital filters, reducing costs,
energy consumption and circuit or chip area.

VIII. CONCLUSIONS

This tutorial addressed the basic theory of complex en-
velope based modems. It has been shown that this theory
is fundamental for understanding and developing simulations
of communication systems and software-defined radios. In
simulations, it helps reducing the sampling rates, consequently
reducing the computation burden and simulation time. In
software-defined radios, it launches the basis for creating the
main building blocks of radios in which most of the tasks are
performed in the digital domain, in a re-configurable fashion.

The author hopes that this work can be of help for the
readers to pave the way for more advanced studies in this
beautiful area, which is at the same time vast and challenging.
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