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Performance of Detectors for Cooperative
Spectrum Sensing Under Laplacian Noise

Luiz Gustavo Barros Guedes and Dayan Adionel Guimarães

Abstract—Electronic systems in general can be impaired by
impulsive noise generated by a variety of sources. Spectrum
sensors are of particular interest herein, since their probabilities
of detection and false alarm can be severely degraded under this
impairment. Several models for impulsive noise have been studied
in the literature, all of them having the common characteristic
of being well represented by heavy-tailed probability density
functions, like Laplace and some Stable distributions. This
article addresses the performances of state-of-the-art detectors
for cooperative spectrum sensing when the received signal is
impaired by Laplacian noise. This is made by means of estimating
the probability of detection for a fixed false alarm rate, when
important system parameters are varied. It is demonstrated
that the robustness against impulsive noise varies significantly
depending on the adopted detection strategy.

Index Terms—Cognitive radio, cooperative spectrum sensing,
dynamic spectrum access, impulsive noise, Laplacian noise.

I. INTRODUCTION

W ITH the unprecedented growing of wireless commu-
nication services working under a fixed bandwidth

allocation policy, scarcity and underutilization of spectrum
bands are experienced. The former consists of the dearth
of new free bands, whereas the latter corresponds to the
momentary unoccupation of some band by the primary user
(PU), who owns the right to use of it.

A possible solution to the above-mentioned problems is the
adoption of a dynamic spectrum access (DSA) policy, provided
by secondary networks of cognitive radios, with the help of
spectrum sensing [1]. The primary objective is to allow a
flexible use of the spectrum bands among the PUs and the
secondary users (SUs), which do not hold the priority right
of using these bands [2]. These SUs should be able to seek
for vacant bands, through spectrum sensing, for shared usage
with the PUs.

Spectrum sensing is a binary hypothesis test in which the
null hypothesis, H0, refers to the absence of the primary
signal in the sensed band and the alternative hypothesis, H1,
refers to the presence of the primary signal. By comparing
a test statistic, T , with a decision threshold, γ, the test is
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performed. It is decided in favor of H1 if T > γ, or in favor
of H0 otherwise. The purpose of this test is, therefore, to
decide whether the received signal was generated under the
hypothesis H0 or H1. There are two key performance metrics
associated with this test: the probability of detection, Pd, and
the probability of false alarm, Pfa [1]. The former is the prob-
ability of deciding that the PU signal is present in the sensed
band, when it is indeed present, that is, Pd = P [T > γ|H1],
while the latter is the probability of deciding that such a signal
is present in the sensed band when, in fact, it is absent, that
is, Pfa = P [T > γ|H0]. Performance targets are, for example,
Pd > 0.9 and Pfa < 0.1, as determined by the IEEE 802.22
standard [3].

Spectrum sensing can be made by a single SU, indepen-
dently from the other SUs, which is referred to as non-
cooperative spectrum sensing (NCSS), or can apply several
SUs working together, which is referred to as cooperative spec-
trum sensing (CSS) [1]. Although multipath fading and signal
shadowing degrade the performance of both NCSS and CSS,
the degradation is less pronounced in the second case. This is
because CSS takes advantage of the spatial diversity achieved
with the use multiple SUs located in different positions.

In the centralized CSS with data fusion, which is the strategy
adopted herein, the n samples collected by each of the m
SUs in cooperation are transmitted to the fusion center (FC)
belonging to the secondary network. Then, these samples are
combined in order to allow for deciding upon the occupation
state of the sensed band. In centralized CSS with decision
fusion, local decisions made by each SU are sent to the FC,
where these decisions are combined to form a global final
decision about the occupancy state of the sensed channel [1].

In addition to the factors related to the signal propagation,
it is well known that noise and different kinds of interference
can degrade spectrum sensing performance. Regarding to the
noise, its omnipresent form is the thermal noise or additive
white Gaussian noise (AWGN), which is generated at the
receiver side of every communication system. However, in
specific environments, impulsive noise may be present either,
and can be way more disastrous to the spectrum sensing
performance than AWGN.

Impulsive noise [4] is an undesired random signal that
contains occasional peaks of relatively high amplitude and
short duration. Electromagnetic impulsive noise, which is
considered in the present context, can originate from various
sources, for instance:

• Switching devices: Switching devices such as relays,
circuit breakers and switches can generate impulsive
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noise when they open or close, which results from sudden
changes in current flow;

• Lightning: Lightning discharges generate extremely high
levels of impulsive electromagnetic noise due to the rapid
discharge of electrical energy;

• Electric motors: Electric motors, especially those with
brushes or commutators, can generate impulsive noise
due to sparking and arcing within the motor. This
noise can propagate through the power supply system or
through electromagnetic radiation;

• Arcing and sparking: Electrical arcs and sparks, caused
by loose connections, faulty wiring or damaged electrical
equipment, produce impulsive noise. These sources are
common in industrial environments, where high-power
electrical equipment is used;

• Electrostatic discharge (ESD): ESD occurs when there is
a sudden flow of static electricity between two objects
with different potentials. It can generate impulsive noise
that interferes with nearby electronic devices;

• Grounding issues: Poor grounding or inadequate shield-
ing can lead to impulsive noise due to ground loops
and unwanted electromagnetic coupling. These issues
can result in noise pickup and interference in electronic
systems.

When studying the influence of impulsive noise in electronic
systems, the impulsive noise model can be selected from
several ones available in the literature, such as: the Middle-
ton Class A [4], the Gaussian mixture [5], the Bernoulli-
Gaussian [4] and the symmetric alpha-stable (SαS) [4], [6].
The McLeish [7] distribution, also known as generalized
symmetric Laplace or Bessel distribution, is also claimed to
be suitable for modeling both Gaussian and non-Gaussian
impulsive noise. The Middleton Class A model consists of
a Poisson noise model form taking into account the impulse
width in its probability density function (PDF). The Gaussian
mixture model corresponds to a summation of a certain quan-
tity of Gaussian components weighted according to the desired
impulsiveness, allowing the adequate modeling of various
classes of continuous models. The Bernoulli-Gaussian model
corresponds to a Gaussian mixture based on the Bernoulli
distribution, and the SαS model is a particularization of the
α-stable (αS) distribution with adjacent samples temporarily
uncorrelated.

In [8], it has been made an extensive study of the state-of-
the-art regarding the interference models in communication
systems, specially impulsive interference, departing from the
studies by Middleton reported in [9].

It is easy to notice in the literature that the SαS distribution
is typically adopted to characterize the heavy-tailed behavior
of non-Gaussian noise, specially impulsive noise, in the CSS
context, as can be seen for instance in [10]–[12]. For instance,
in [13], the performance of a centralized CSS with data fusion
is assessed, considering both SαS and alpha-sub-Gaussian
(αSG) impulsive noise models. The latter keeps the amplitudes
for each random variable following the SαS distribution, but
introduces a non-zero temporal correlation among a group of
adjacent samples.

A recent work has proposed the αSG [14], [15] distribution

aiming to characterize both amplitude and temporal correlation
among adjacent samples of the impulsive phenomena. The
generalized Gaussian distribution was found to be suited
for modeling not only the AWGN, but also non-Gaussian
noises, such as impulsive noise, having as particularization
the Laplace distribution [16]–[18].

The Laplacian noise model is considered in this article,
aiming at evaluating its influence on a wide range of modern
detectors for spectrum sensing. The Laplace distribution [18]
is a member of the family of symmetric stable distributions,
and is also known as the double-exponential distribution. It is
characterized by heavy tails when compared to the Gaussian
distribution, being often used to model data with outliers,
which is the case of a signal corrupted by thermal plus
impulsive noise [19]–[24].

A. Related research

Spectrum sensing with energy detection (ED) has been thor-
oughly analyzed in [25], considering a deterministic primary
signal under AWGN. In [1], an adaptation of the ED test
statistics has been derived, proving to be the optimal setting
of this detection process in the aforementioned scenario.
Although it is a relatively simple detection strategy in terms
of implementation, the need to know the noise variance limits
the operation of ED.

The absolute value cumulating (AVC) detector has been
proposed in [26], where it is claimed that it is the most
suitable technique for spectrum sensing under impulsive noise.
Nonetheless, no justification about this attribute has been prop-
erly mentioned in the literature [22], [26], [27]. Indeed, the
AVC is an optimal detector under Laplacian impulsive noise
with fixed noise power and absence of fading, as demonstrated
in the Appendix to this article.

The ED and the AVC are semi-blind detectors, since they
require no information about the PU signal, but make use of
the noise level information (respectively, the noise variance
and its standard deviation) in their test statistic or to establish
de decision threshold. The computational complexity of both
ED and AVC is governed by the number of multiplications in
the computation of the test statistic, when the noise variance
or standard deviation is known a priori. However, in practice,
the method applied to estimate the noise variance or standard
deviation increases the overall computational complexities of
ED and AVC beyond the complexities of many detectors,
which is an aspect that is frequently disregarded in the
literature.

The Gerschgorin radii and centers ratio (GRCR) detector,
the Gini index detector (GID) and the Pietra-Ricci index de-
tector (PRIDe) are innovative for cooperative or multi-antenna
spectrum sensing. They have been proposed in [28], [29]
and [30], respectively. These detectors are completely blind
(requiring no information either on the PU signal and the
noise level), have low computational complexity and attain
robustness against variations or non-uniformity in the received
signal and noise powers, allowing their performance metrics
to remain practically unchanged in these scenarios. They also
have the constant false alarm rate (CFAR) property, which
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allows, for a target probability of false alarm, the establishment
of the decision threshold independently of the noise variance.
In addition, the GRCR, the GID and the PRIDe have similar
or better performances compared to the most robust detectors
present in the literature at the time of publication of [28], [29]
and [30].

The GRCR, GID and PRIDe exhibit approximately the
same computation complexity, which is low because their test
statistics are formed by a direct operation on the elements of
the received signal sample covariance matrix (SCM).

The locally most powerful invariant test (LMPIT) detector
has been proposed in [31], and proved to be an attractive
alternative for scenarios under low signal-to-noise ratio (SNR)
regimes. Moreover, the LMPIT has low computation complex-
ity, since its test statistic is formed by a direct operation on
the elements of the SCM.

In [32] and [33], the Hadamard ratio (HR) detector and
the volume-based detector number 1 (VD1) are addressed,
respectively. In the former work, the authors have derived
an expression for Pd, enabling a more accurate theoretical
and numerical performance assessment for HR. In the latter,
expressions for Pd and Pfa have been derived for the VD1.
The computational complexity for the HR and VD1 is mainly
governed by the computational cost associated to the formation
of the SCM and in the calculation of its determinant.

In [34], the performance of two eigenvalue-based detectors
for spectrum sensing is analyzed. The Roy’s largest root test
(RLRT) detector, also known as maximum eigenvalue detector
(MED), requires precise knowledge of the noise variance,
whereas the generalized likelihood ratio test (GLRT) detector
does not. The authors have proposed expressions for Pd and
Pfa in the case of the GLRT, as well as an expression of the
difference in performance between such detectors, reaching
the conclusion that accurate knowledge of noise variance can
significantly increase detection capability, especially in sce-
narios with few sensors. The authors have also addressed the
maximum-minimum eigenvalue detection (MMED) detector
which, given its construction, is sub-optimal in comparison to
the GLRT.

The arithmetic to geometric mean (AGM) detector has been
proposed in [35]. It was conceived as an eigenvalue-based de-
tector, established on the GLRT principle for spectrum sensing.
Whether in the presence or absence of noise uncertainty, the
AGM detector outperforms the ED given certain assumptions
made by the authors regarding the primary signal. On the other
hand, there is an increase in complexity due to the need to
compute the SCM and estimate its eigenvalues.

The GLRT, the MMED and the AGM are blind detectors,
since it is not necessary any information related to the primary
signal neither the noise. The MED is semi-blind because
it requires the noise variance information. The process of
estimating the eigenvalues, which depends on the dimensions
of the SCM, yields increased computational complexity and
processing time for computing the test statistics of these
detectors in comparison with the GRCR, GID, PRIDe and
LMPIT.

B. Contributions and organization of the article

There are two fundamental contributions of this work:
1) The performance analysis of various state-of-the-art

detectors for centralized CSS with data fusion when
impaired by Laplacian noise is the main contribution.
The detectors analyzed are: ED, AVC, GRCR, GID,
PRIDe, LMPIT, HR, VD1, eigenvalue-based GLRT,
MMED, MED and AGM. The performance comparisons
are made by means of the probability of detection, for
a CFAR of 0.1, as a function of the main CSS system
parameters;

2) The demonstration (see the Appendix) of the optimality
of the AVC detector when subjected to Laplacian impul-
sive noise, under the assumptions of fixed noise power
and absence of fading, is also provided to fill a gap in
the literature regarding such a demonstration.

The remaining of this article is structured as follows: Sec-
tion II describes the system model adopted in the centralized
CSS system, while Section III addresses the test statistics used
in the performance analysis. Numerical results and discussions
are given in Section IV. Section V concludes the work. As a
complementary part of the article, the Appendix shows a de-
tailed demonstration of the AVC’s optimality when subjected
to Laplacian noise.

II. SYSTEM MODEL

The signal model adopted herein refers to the centralized
CSS with data fusion, wherein n samples proceeding from
the primary signal, which has been transmitted by the PU, are
collected by each of the m cooperating SUs and transmitted
to the FC through an error-free control channel. At the FC,
mn received samples compose the matrix Y ∈ Rm×n, given
by

Y = hxT + (1 − I)V + IL, (1)

where I is an indicator variable such that I = 1 particularizes
(1) for a sensing channel with Laplacian noise and I = 0
particularizes (1) for a pure AWGN channel. The vector x
∈ Rn×1, which models the PU signal, is composed of n
real Gaussian samples with zero mean and variance defined
according to the average SNR across the SUs. The use of
samples following the Gaussian distribution is suitable for
modeling the nature of envelope fluctuations of numerous
modulated and filtered signals.

The channel vector h ∈ Rm×1 having elements hi, i =
1, 2, ...,m, portraying the gains of the sensing channel between
the PU and each SU, is given by

h = Ga, (2)

where a ∈ Rm×1 is a vector assembled by real Gaussian
random variables ai ∼ RN [

√
κ/(κ+ 1), 1/(κ+ 1)], where κ

models the Rice factor [36] of the channel between the PU and
the i-th SU. In dB, its value becomes κdB = 10log10(κ). The
elements hi are considered constants during each sensing in-
terval and independent and identically distributed (iid) between
successive sensing rounds. Furthermore, the bandwidth of the
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primary signal is considered to be smaller than the coherence
bandwidth of the sensing channel, which affects all frequency
components of the signal in the same manner. In other words,
this scenario corresponds to a flat fading channel.

According to [37], it has been verified that κdB is a random
variable which depends on the environment where the associ-
ated system is inserted. It is modeled as a Gaussian random
variable κdB ∼ N [µκ, σκ], considering both µκ and σκ in dB.

The matrix G ∈ Rm×m in (2) is given by

G = diag

(√
p

ptx

)
, (3)

where p = [p1 p2 · · · pm]T is the vector containing the
received signal powers at the SUs, ptx is the primary signal
transmitted power, in watts, and diag(·) returns a diagonal
matrix whose main diagonal is composed by the elements of
the vector present in the argument.

The area-mean received power, pi, by the i-th SU receiver at
a given distance di from the PU transmitter can be calculated
using the log-distance propagation prediction method [36] as

pi = ptx

(
d0

di

)η

, (4)

where d0 corresponds to a reference distance in the far-field
region of the PU transmit antenna and η is the environment-
dependent path-loss exponent [36]. The received power varies
inversely proportional to the value of η at a given distance.

The elements in the i-th row of the matrix V ∈ Rm×n,
which models the AWGN noise, refer to the i-th SU and are iid
Gaussian random variables, with zero mean and time-varying
variance σ2

i given by

σi
2 = (1 + ρui)σ

2
avg, (5)

where 0 ≤ ρ < 1 is the fractional variation of the noise power
around its mean, σ2

avg = 1
m

∑m
i=1 σ

2
i , and ui is the realization

of a uniform random variable Ui ∼ [−1, 1].
The instantaneous SNR, γ, across the SUs is given by

γ =
1
m

m∑
i=1

pi
σ2
i

. (6)

Therefore, the average SNR across the SUs is given by

SNR = E[γ], (7)

where E[·] returns the expected value of the random variable
located into its argument. The final formula for the average
SNR across the SUs, established in [38], whose details were
omitted here for concision, is given by

SNR =
ln
(

1+ρ
1−ρ

)
2ρmσ2

avg

m∑
i=1

pi. (8)

The matrix L ∈ Rm×n contains iid elements following the
Laplace distribution, thus modeling the Laplacian noise sam-
ples. The Laplace (or double exponential) random variable [18,
p. 16], l, with zero mean and variance equals to 2b2, presents
its PDF as

f(l|b) = 1
2b

exp

(
− l

b

)
, (9)

where b > 0 is the scale factor or diversity. Because the mean
is fixed, the higher the value b is, the heavier the tail is.

III. TEST STATISTICS

Considering centralized CSS with data fusion, this section
presents the test statistics of the detectors whose numerical
results are compared in Section IV, namely: the ED, the AVC,
the GRCR, the GID, the PRIDe, the LMPIT, the HR, the VD1,
the GLRT, the MMED, the MED and the AGM.

The ED test statistic is given by [1]

TED =

m∑
i=1

1
σ2
i

n∑
j=1

|yij |2, (10)

where σ2
i is the Gaussian noise variance at each SU and yij

composes the matrix Y established in (1), referring to the j-th
sample gathered by the i-th SU.

The test statistic of the AVC detector [26] is given by

TAVC =

m∑
i=1

1
σi

n∑
j=1

|yij |, (11)

where σi is the Gaussian noise standard deviation at each SU.
Among the above-mentioned detection criteria, some test

statistics can be computed from the SCM of the received
signal. It is formed at the FC and is given by

R̂ =
1
n
YY†, (12)

where † signifies the complex conjugate and transpose opera-
tion.

The test statistic of the GRCR [28] detector is given by

TGRCR =

m∑
i=1

m∑
j=1,j ̸=i

|rij |

m∑
i=1

rii

, (13)

where rij corresponds to the element in the i-th row and j-th
column of R̂.

The test statistics of the GID [29] and PRIDe [30] detectors
are given respectively by

TGID =

m2∑
i=1

|ri|

m2∑
i=1

m2∑
j=1

|ri − rj |
(14)

and

TPRIDe =

m2∑
i=1

|ri|

m2∑
i=1

|ri − r̄|
, (15)

where ri is the i-th element of the vector r formed by stacking
the columns of the SCM and r̄ = (1/m2)

∑m2

i=1 ri.
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For the LMPIT [31] detector, the test statistic is

TLMPIT =

m∑
i=1

m∑
j=1

|cij |2, (16)

where cij composes the i-th row and j-th column of the matrix
C = E−1/2R̂E−1/2. The diagonal matrix E presents elements
equal to the main diagonal of R̂.

The test statistics of the HR [32] and VD1 [33] detectors
are computed respectively by

THR =
det(R̂)∏m

i=1 rii
(17)

and
TVD1 = log[det(S−1R̂)], (18)

where det(·) denotes the determinant operation. The diagonal
matrix S contains elements arranged in the vector s =
[s1s2 · · · sm], with si = ||R̂(i, :)||2 and || · ||2 denoting the
Euclidean norm.

In the centralized eigenvalue-based CSS with data fusion,
after calculating the SCM at the FC, its ordered eigenvalues
(λ1 ≥ λ2 ≥ · · · ≥ λm) are estimated and the test statistics
GLRT, MMED and MED can be built, respectively, as [34]

TGLRT =
λ1

1
m

∑m
i=1 λi

, (19)

TMMED =
λ1

λm
, (20)

TMED =
λ1

σ2
avg

. (21)

It is worth highlighting that the MED test statistic has
been originally conceived considering equal noise variances
across the SUs. However, in a practical scenario, the SUs
are subjected to unequal and possibly time-varying noise
variances, yielding performance loss for using the average
noise power instead of the specific noise power levels in each
SU, which, by the way, is not possible in (21).

For the AGM [35] detector, its test statistic is given by

TAGM =
1
m

∑m
i=1 λi

(
∏m

i=1 λi)
1
m

. (22)

IV. NUMERICAL RESULTS

This section presents numerical results of the centralized
CSS with data fusion. Systems in the absence and presence
of impulsive noise, respectively, under Gaussian noise only
and under Laplacian noise, are compared, for the detectors
ED, AVC, GRCR, GID, PRIDe, LMPIT, HR, VD1, GLRT,
MMED, MED and AGM.

The results expressed herein return the values of Pd

achieved in accordance with the variation of the most relevant
system parameters, assuming Pfa = 0.1 [3]. Each point on
a curve has been generated from 10000 Monte Carlo events
using the Matlab R2019a. In conformity with the methodology
outlined in [39], a confidence interval analysis has been
conducted using the binomial proportion confidence interval

for a single proportion. This analysis has been made using the
Matlab function binofit, which implements the Clopper-
Pearson method [40]. The maximum confidence interval, cor-
responding to an estimated Pd equal to 0.5, was found to
be 0.0197. This value clearly confers the level of accuracy
suitable for the interpretation of the results presented herein.
The Matlab code utilized to generate these results is available
for retrieval from [41].

By making the absence of Laplacian noise scenario as
reference, the value of the average SNR or the number of
samples, n, has been adapted, in part of the cases, so that
the respective best detector yields Pd ≈ 0.9 at the mid-
value of the system parameter being analyzed. Thus, variations
in Pd can be clearly perceived. When fixed, for a better
adequacy of situations more likely to occur in practice, the
system configuration parameters are: m = 6 SUs, which
corresponds to a small number of cooperative cognitive ra-
dios, leading to an efficient utilization of control channel
resources. Additionally, the following curves show that an
increase in the number of SUs results in a diminishing returns
fashion of performance improvement; n = 250 samples to
achieve the targeted performance metrics; SNR = −10 dB,
considering that the system’s operation may occur in sce-
narios characterized by significantly low SNR; fraction of
noise variations, ρ = 0.5, which was arbitrarily chosen to
model variations in thermal noise power due to changes in
ambient temperature, some form of reception circuit descaling
or interfering signals in the bandwidth of interest; path-loss
exponent, η = 2.5, chosen to fit a typically urban scenario;
normalized coverage radius, r = 1 m; reference distance for
path-loss calculation, d0 = 0.001r; ptx = 5 W, adapting to
practical requirements of power for real PU transmitters; and
random Rice factor, with mean µκ = 1.88 dB and standard
deviation σκ = 4.13 dB, considering urban area [37]. The
parameters related to the Laplacian noise have been calculated
and generated as described in Section II.

Figs. 1 to 7 shows Pd as a function of the following system
parameters: mean of Rice factor in dB, µκ; number of SUs
in cooperation, m; path-loss exponent, η; number of samples
collected per SU in each sensing round, n; average signal-
to-noise ratio in dB over all SUs, SNR; fraction of noise
power variations about the mean, ρ; and x-coordinate in m
of the PU transmitter, equal to y-coordinate. In addition, such
figures present one pair of graphs each (except for Fig. 6,
which presents two pairs of graphs, explained more precisely
in the following paragraphs). The graphs on the left show the
performance assessment results under the absence of impulsive
noise. The graphs on the right correspond to the performance
results evaluated under Laplacian noise.

Prior to analyze the outcomes shown herein, it is noteworthy
to know that a given detector does not have its performance
affected in the same manner as another detector for the
same system configuration and the same variation of a given
parameter. This is justified because the received signal samples
are handled by the test statistics differently from each other,
which results in different behaviors among the detectors.

Fig. 1 gives Pd versus mean of Rice factor, µκ, in dB. In the
absence (left-hand side graph) and in the presence (right-hand
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side graph) of Laplacian noise, it can be seen that the mean of
Rice factor has a certain influence on the performance of the
various detectors just from around µκ ≈ −5 dB. This value
corresponds to a situation in which the dominant component
of the primary signal starts to stand out in relation to the
scattered component, thus increasing the performance of most
detectors, in different proportions. For mean of Rice factor
values greater than 5 dB, the detectors GID, PRIDe, ED, AVC,
HR, VD1, GRCR and LMPIT tend to show similar and optimal
performances. The exception is found in the performance drop
shown by the ED in the presence of Laplacian noise. The
MMED and the AGM detectors showed the worst performance
for any values of µκ in both scenarios.

Fig. 1a, referring to the absence of Laplacian noise, shows
ED outperforming the other detectors, as expected, and fol-
lowed by the AVC detector. It can be seen that the LMPIT,
the GRCR, the HR and the VD1 detectors present similar
performances for any mean of Rice factor values. The PRIDe
and the MED detectors have analogous performances for
lower values of µκ, with the former outperforming the latter
from µκ ≈ −5 dB. The GLRT has the worst performance,
followed, respectively, by the MMED and by the AGM, whose
curves remain practically invariable with the change in the
parameter µκ. For smaller values of µκ, the GID show the
worst performance, but, for higher values of the mean of Rice
factor, its performance improve significantly, with its curve
tending to the optimal ones of the PRIDe, the HR, the VD1,
the GRCR, the ED, the LMPIT and the AVC detectors. There
is not an specific reason for this behavior. It is a feature of
the detector itself, present in the following results either, that
causes it to react differently in relation to other detectors to
the variation of the same parameter.

From Fig. 1b, it is noticed that there is a maintenance in the
pattern of the curves, only with a performance reduction for
most of the detectors due to the presence of Laplacian noise,
in comparison to the absence of Laplacian noise scenario.
The exception is for the AVC detector, which presents a
performance improvement and excels the other detectors for all
values of µκ. A more evident deterioration in the performance
of the ED, the MED, the GLRT and the MMED detectors can
be seen, in relation to the other detectors, when compared with
the scenario of absence of Laplacian noise. It can be noticed
a great robustness against Laplacian noise for the GID, the
PRIDe, the HR, the VD1, the GRCR and the LMPIT detectors,
which have presented performance curves tending to be very
similar to those achieved in the scenario that disregards the
presence of impulsive noise.

Fig. 2 shows Pd versus number of SUs in cooperation, m.
It can be seen that there is an improvement in the performance
of all detectors with an increase in the value of m, either in
the absence (left-hand side graph) or in the presence (right-
hand side graph) of Laplacian noise. Due to the increase in the
number of SUs in cooperation, there is an increase in spatial
diversity gain, with consequent performance improvement.
The pattern of the curves is maintained in both scenarios,
emphasizing the more severe performance loss suffered by the
ED and the MED detectors in the presence of Laplacian noise.
A notable performance improvement of the AVC detector in

(a) (b)

Fig. 1. Probability of detection, Pd, versus mean of Rice factor (dB), µκ, for SNR = −
8 dB: system under Gaussian noise (left) and system under Laplacian noise (right). This
figure is better viewed in color.

this scenario is also observed.
When the system is under Gaussian noise only, as shown

in Fig. 2a, the ED performs slightly better than the AVC
and more prominently compared to other detectors, for any
value of m. The PRIDe, the HR, the VD1, the GRCR and
the LMPIT detectors have a similar performance curve along
all values of m in use, being inferior to the ED and the AVC
for smaller values of m, but having similar performances to
both for larger values of this same system parameter. The GID
and the MED show similar performances, lower than those of
the aforementioned detectors. The GLRT, the MMED and the
AGM detectors return the worst performances for any values
of m, with the first one outperforming the second one and the
AGM.

From Fig. 2b, it is seen that, when the system is subjected
to Laplacian noise, there is a significant performance loss for
the ED and a meaningful robustness against this type of noise
for the AVC detector. Mainly the PRIDe, followed by the HR,
the VD1, the GRCR and the LMPIT detectors have a great
robustness in this scenario, unlike the MED, the GLRT, the
AGM and the MMED, whose performances were degraded by
the presence of Laplacian noise. It is noteworthy to mention
that the GID, the PRIDe, the HR, the VD1, the GRCR and
the LMPIT do not have their performances affected by the
presence of impulsive noise. All comparisons made here take,
as reference, the absence of impulsive noise situation.

(a) (b)

Fig. 2. Probability of detection, Pd, versus number of SUs in cooperation, m, for SNR
= − 9 dB: system under Gaussian noise (left) and system under Laplacian noise (right).
This figure is better viewed in color.
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Fig. 3 shows Pd versus path-loss exponent, η. No perfor-
mance improvement is observed with the variation of this pa-
rameter for the different detectors. Either there is performance
maintenance, or there is a reduction. The path-loss exponent
indicates how the received signal power decays with distance.
The higher its value, the more intense the signal power tends
to drop with distance. In both scenarios, a more pronounced
drop in the performance of the GID, the PRIDe, the HR, the
VD1, the GRCR and the LMPIT detectors is noticed with the
increase in the value of the path-loss exponent, whereas, for
the other detectors, there is a certain constancy or slight drop
in performance with the variation of η.

As expected, from Fig. 3a, the ED outperforms the other
detectors, followed by the AVC detector. Its curves are slightly
penalized with the increase in the value of η. The PRIDe, the
HR, the VD1, the GRCR and the LMPIT detectors present
very similar performance curves, being more compromised
as the value of the path-loss exponent increases. This same
behavior can be seen in the performance of the GID detector,
whose curve is little below from the aforementioned detec-
tors. The MED and GLRT performance curves are discreetly
penalized as the path-loss exponent value increases, with the
former surpassing the GID curve only for η ≥ 3 and with the
latter showing the worst values of Pd for any values of η. The
MMED and the AGM detectors return the worst performers
regardless of the value of η.

From Fig. 3b, it is noticed a maintenance in the pattern
of the curves, compared to the Fig. 3a, except for the severe
sensitivity to the presence of impulsive noise suffered by the
ED, the MED, the GLRT, the MMED and the AGM detectors.
In this scenario, there is no path-loss exponent value that
causes the MED curve to be above the GID curve. Once again,
the GID, the PRIDe, the HR, the VD1, the GRCR and the
LMPIT do not have any performance change in the presence
of the Laplacian noise, in relation to the absence of this type of
noise. The robustness of the AVC to the presence of Laplacian
noise is so evident that its performance improves, in relation to
the scenario without impulsive noise, and surpasses the other
detectors, for any values of η.

(a) (b)

Fig. 3. Probability of detection, Pd, versus path-loss exponent, η, for SNR = −8.5 dB:
system under Gaussian noise (left) and system under Laplacian noise (right). This figure
is better viewed in color.

Fig. 4 shows Pd versus number of samples collected per
SU in each sensing round, n. The accuracy in deciding on
the state of occupancy of the user’s band holding the right of

use is higher when a greater number of samples are gathered
in a given sensing interval, keeping the sampling rate fixed.
This is why the performance of all detectors improves with the
variation in the value of n. It can be seen a poor performance
for the GLRT, the MMED and the AGM in both scenarios.
There is a steep improvement in the performance of the
various detectors up to n = 400 samples. From this value,
the improvement becomes smoother.

Fig. 4a shows the ED outperforming the other detectors,
followed by the AVC detector. Once again, the PRIDe, the HR,
the VD1, the GRCR and the LMPIT detectors have similar
performances. For larger values of n, their performances tend
to overlap with each other and with those of the ED and the
AVC detectors. With a little worse performances than those
above-mentioned, we have, again, the GID followed by the
MED. Note that the performances of the MED, the GLRT, the
MMED and the AGM tend to remain constant from n = 400.

From Fig. 4b, it can be seen the same pattern of the curves,
compared to the Fig. 4a, except, once again, for the strict
sensitivity to the presence of Laplacian noise suffered by the
ED, the MED, the GLRT, the MMED and the AGM detectors.
The ED curve was affected in such a way as to be between the
GID and the MED curves. On the other hand, the AVC detector
considerably outperformed other detectors in the presence of
impulsive noise, for any value of n. Once again, the GID, the
PRIDe, the HR, the VD1, the GRCR and the LMPIT do not
have any performance change in the presence of the Laplacian
noise, in relation to the absence of this kind of noise.

(a) (b)

Fig. 4. Probability of detection, Pd, versus number of samples collected per SU in each
sensing round, n, for SNR = − 10 dB: system under Gaussian noise (left) and system
under Laplacian noise (right). This figure is better viewed in color.

Fig. 5 shows Pd versus average signal-to-noise ratio over all
SUs, SNR in dB. As expected, the results show an increase in
the performance of all detectors with the SNR. Again, it can
be noticed that the GLRT, the MMED and the AGM detectors
have the worst performances in both scenarios and for any
value of SNR.

As shown in Figs. 1a to 4a, Fig. 5a presents the ED
standing out the other detectors, as expected. Then, it is
followed by the AVC detector. Afresh, the PRIDe, the HR,
the VD1, the GRCR and the LMPIT detectors have similar
performances, with the former mildly outperforming the other
ones. For SNR > −7.5 dB, their curves tend to overlap
and to get optimal performances, along with those of the ED
and the AVC detectors. For most SNR values, the MED, the
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GLRT, the MMED and the AGM detectors present the worst
performances. An interesting point is that the GID outperform
the PRIDe, for lower SNR values (up to about −15 dB), being
below only the ED and the AVC detectors in this case. From
this value onwards, its curve is below that of the others above-
mentioned. For SNR > −7.5 dB, it tends to be overcome even
by the MED, the GLRT, the MMED and the AGM detectors.

From Fig. 5b, it is observed that the AVC detector stands
out the other detectors in the presence of Laplacian noise. The
ED, the MED, the GLRT, the MMED and the AGM detectors
have their performances affected by the presence of this type of
noise, perceiving a more significant sensitivity for the ED than
for the other detectors. The GID, the PRIDe, the HR, the VD1,
the GRCR and the LMPIT detectors show a visible robustness
to the Laplacian noise, since their curves have kept the pattern
observed in the absence of Laplacian noise scenario, which has
been taken as reference.

(a) (b)

Fig. 5. Probability of detection, Pd, versus average signal-to-noise ratio over all SUs,
SNR in dB, for n = 450: system under Gaussian noise (left) and system under Laplacian
noise (right). This figure is better viewed in color.

Fig. 6 presents Pd versus fraction of noise power variations
about the mean, ρ. The graphs reveal that the performance
of all detectors, although in different proportions, tends to
worsen as the value of ρ increases. The noise uncertainty
can be interpreted as a certain inaccuracy in the process of
estimating the variance or the standard deviation of noise when
it is necessary to use them in computing test statistic and these
parameters are unknown. Another possible perspective refers
to the assumption that variations in the real variance values
may occur due to two main reasons, even if the estimated
variance is properly established during the detector design
phase: unwanted signals being captured by the receiver and
irregular calibration on the receiver’s front-end.

From Fig. 6a, considering the absence of Laplacian noise
and noise uncertainty not applied, it can be seen that the ED
tends to surpass the other detectors, except for lower values
of ρ, when the MED and the GLRT detectors tend to return
better performances. For the AVC, the LMPIT, the PRIDe, the
HR, the VD1 and the GRCR detectors, it is verified similar
behaviors. Until ρ = 0.4, its curves remain invariables. From
this value, these detectors show a slight drop in performance.
The GID detector presents a lower performance than these
detectors. The MED, the GLRT, the MMED and the AGM
show a more abrupt drop in performance, particularly from
ρ = 0.2.

Maintaining the non-application of noise uncertainty, but
inserting the system in a scenario with the presence of
Laplacian noise, as seen in Fig. 6b, it can be noticed that
the pattern of the curves is maintained, taking the absence of
Laplacian noise as reference. The AVC detector outperforms
other detectors for any values of ρ. The ED suffers a severe
loss of performance, with its curve positioned very close to that
of the GID. The MED, the GLRT, the MMED and the AGM
suffered a minor performance loss in this scenario, compared
to the ED curve. The GID, the PRIDe, the HR, the VD1, the
GRCR and the LMPIT detectors, once again, show an evident
robustness against Laplacian noise, as their performances have
kept the same pattern analyzed in the absence of impulsive
noise scenario.

Figs. 6c and 6d unveil the application of noise uncertainty
in the absence (left-hand graph) and in the presence (right-
hand graph) of Laplacian noise. The pattern of the curves
are kept from the previous scenario, except for the ED and
the AVC. Detectors that are influenced by noise uncertainty
present either the variance or the standard deviation when
calculating their test statistics. Therefore, the influence on
the ED, the AVC and the MED detectors is noticeable. In
the absence of Laplacian noise, the ED and the AVC exhibit
severe performance degradation. A greater robustness of the
MED is noted when considering the noise uncertainty, as its
performance is slightly degraded, surpassing even the AVC
detector one. It is worth remembering that both comparisons
were made with the situation without impulsive noise and
without applying noise uncertainty. It is interesting to note
that the optimal condition of the AVC detector under Laplacian
noise is lost when considering noise uncertainty.

Finally, Fig. 7 show Pd versus x-coordinate of the PU
transmitter in meters, m, equal to y-coordinate. For values
of x = y < 3r, it is noted that the more robust detectors
present a decreased performance, in different proportions,
when compared with them even from this coordinate value of
the PU transmitter, in which one can see, for all detectors, an
invariability in the value of Pd. The first case is due to greater
relative differences among the received signal powers, which is
equivalent to an increase in the value of the path-loss exponent.
The second case means that there is insignificant relative
differences among the received signal powers, not causing,
therefore, improvement or loss of performance. From the other
analyzes covered in this work, it appears that there is a pattern
in the performances of detectors that are more robust and those
that are more sensitive, whether in the scenario considering
absence (left-hand side graph) and presence (right-hand side
graph) of Laplacian noise. Once again, the superiority of the
AVC detector, compared to other detectors, in the presence of
impulsive noise, stands out.

V. CONCLUSIONS

This work has assessed the performance of centralized co-
operative spectrum sensing with data fusion, under Laplacian
impulsive noise. The performances of the detectors ED, AVC,
GRCR, GID, PRIDe, LMPIT, HR, VD1, GLRT, MMED, MED
and AGM were compared under Gaussian noise and under
Laplacian noise models.
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(a) (b)

(c) (d)

Fig. 6. Probability of detection, Pd, versus fraction of noise power variations about the
mean, ρ, for SNR = − 8.5 dB: system under Gaussian noise (left) and system under
Laplacian noise (right). Noise uncertainty not applied (above) and applied (below). This
figure is better viewed in color.

(a) (b)

Fig. 7. Probability of detection, Pd, versus x-coordinate of the PU transmitter, m, equal
to y-coordinate, for SNR = − 9 dB: system under Gaussian noise (left) and system
under Laplacian noise (right). This figure is better viewed in color.

The AVC detector has shown excellent performance under
Laplacian noise, but, from what was concluded in the Ap-
pendix, it will no longer be optimal under other types of noise.
For any values of the analyzed parameters, it can be noted
a great robustness for the AVC detector in the presence of
Laplacian noise, since there was an outperforming pattern, in
comparison with the other detectors.

It has been verified either that the GID, the PRIDe, the
HR, the VD1, the GRCR and the LMPIT detectors do not
have any performance modification in the presence of the
Laplacian noise, in relation to the absence of this type of noise.
This indicates the significant robustness of such detectors
and, therefore, their suitability against the potential degrading
effects imposed by the Laplacian noise. On the other hand,

the ED, the MED, the GLRT, the MMED and the AGM
detectors have demonstrated a significant sensibility against
the Laplacian impulsive noise, especially the ED, which went
from a reference behavior, in the absence of impulsive noise,
to an intermediate behavior, in the presence of the Laplacian
noise. For that reason, the use of these latter detectors proved
to be inappropriate for spectrum sensing under Laplacian
impulsive noise, in contrast with the former ones.

As an opportunity for contribution in future researches, this
performance analysis can be extended to other types of impul-
sive noise. It becomes interesting either to develop or improve
a given detector in order to make it optimal or even more
robust for any type of impulsive noise. Another opportunity
that can be considered is the assessment of the detectors’
performances under impulsive noise, but considering other
channel fading models, or even other impulsive noise models.

APPENDIX

The paramount claiming in the design of a detector is to
establish a test statistic T and set the decision threshold γ
in order to achieve a targeted spectrum sensing performance.
For this purpose, it is going to be used the classical approach,
represented here by the Neyman-Pearson criterion, which has
as main objective finding T and γ so the probability of
detection is maximized under a restriction on the maximum
probability of false alarm.

A test statistic given as a result of the Neyman-Pearson
criterion can be formed as a ratio of two quantities or a scaling
factor of it and rewritten as follows, named as log-likelihood
ratio (LLR) [1]

T = log
[
p(y|H1)

p(y|H0)

]
, (23)

where p(y|H1) and p(y|H0) refer to PDFs of the n-
dimensional received signal vector y, respectively conditioned
on the hypotheses H1 and H0.

Let’s consider that the vector y containing n signal samples
plus noise is received by an SU, so that,

y = x+ v, (24)

where x and v correspond to the vectors which contains,
respectively, the primary signal and the noise samples present
at the SU.

It is assumed that v is a vector of iid complex Laplace [42]
random variables with zero mean and variance σ2, that is,
v CL[0, σ2I], where I is the identity matrix of order n × n
and σ2I corresponds to the covariance matrix of v. Thus, it
follows that y = v, under the hypothesis H0, and y = x+v,
under the hypothesis H1.

It is assumed that y does not have any arrangement that
can be exploited to ease the detection process. In this case, it
is addressed that x is simply a vector of iid complex Laplace
random variables with zero mean and variance σ2

X , that is,
y CL[0, σ2I], under H0, and y CL[0, (σ2+σ2

X)I] under H1.



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 39, NO. 1, 2024. 10

It is known that the PDF of an n-dimensional random vector
z having real Laplace-distributed entries, mean µ = 0 and
covariance matrix Σ is given by [43]

p(z) = p(z1, z2, ..., zn)

=
2

(2π)v+1det(Σ)
1
2

× Kv(
√
2zTΣ−1z)

(
√

zTΣ−1z/2)v
, (25)

where p(z) = p(z1, z2, ..., zn) denotes the joint PDF of
the elements of z, v = n

2 − 1 and Kv(·) is the modified
Bessel function of the second kind with order v. An well
known asymptotic formula for this Bessel function is given
as follows [43]

Kv(d) ≈
√

π

2d
exp(−d), (26)

while |d| tends to infinity. Using d =
√
2zTΣ−1z, it follows

that

Kn
2 −1(

√
2zTΣ−1z) =

√
π

2
√
2zTΣ−1z

exp(−
√
2zTΣ−1z)

=

(
π

2
√
2zTΣ−1z

) 1
2

exp(−
√
2zTΣ−1z).

(27)

Applying (27) into (25), we succeed in the final formula for
the joint PDF of the elements of z, p(z), in the subsequent
manner

p(z) =
2

(2π)
n
2 det(Σ)

1
2

×

(
π

2
√
2zTΣ−1z

) 1
2

exp(−
√
2zTΣ−1z)

(
√

zTΣ−1z/2)
n
2 −1

.

(28)
Solving separately for each hypothesis, initiating by

p(y|H1), it follows that

p(y|H1) =

2

(2π)
n
2 (σ2 + σ2

X)
1
2

×

(
π

2
√

2||y||2Σ−1

) 1
2

exp(−
√
2||y||2Σ−1)

(
√
||y||2Σ−1/2)

n
2 −1

=
2

(2π)
n
2 (σ2 + σ2

X)
1
2

×

 π

2

√
2

||y||2

σ2+σ2
X

 1
2

exp
(
−
√
2 ||y||2
σ2+σ2

X

)
(√

||y||2
2(σ2+σ2

X)

)n
2 −1

=
2

(2π)
n
2 (σ2 + σ2

X)
1
2

×

π
1
2(

2
√

2||y||

(σ2+σ2
X

)
1
2

) 1
2

exp
(
−

√
2||y||

(σ2+σ2
X)

1
2

)
(

||y||
√
2(σ2+σ2

X)
1
2

)n
2 −1

=
2(π(σ2 + σ2

X)
1
2 )

1
2 (
√
2(σ2 + σ2

X)
1
2 )

n
2 −1

(2π)
n
2 (σ2 + σ2

X)
1
2 (2

√
2)

1
2

× 1

||y||n2 − 1
2

exp

(
−

√
2||y||

(σ2 + σ2
X)

1
2

)
. (29)

Using the same strategy in order to calculate p(y|H0), we
have

p(y|H0) =

2

(2π)
n
2 (σ2)

1
2

×

(
π

2
√

2||y||2Σ−1

) 1
2

exp(−
√

2||y||2Σ−1)

(
√
||y||2Σ−1/2)

n
2 −1

=
2

(2π)
n
2 σ

×

(
π

2
√

2
||y||2
σ2

) 1
2

exp
(
−
√
2 ||y||2

σ2

)
(√

||y||2
2σ2

)n
2 −1

=
2(πσ)

1
2 (
√
2σ)

n
2 −1

(2π)
n
2 σ(2

√
2)

1
2

× 1

||y||n2 − 1
2

exp

(
−
√
2||y||
σ

)
. (30)

Every term that is independent of y can be considered as a
proportionality constant which does not interfer in the final
result of the test statistic. Applying this consideration and
overwriting both (30) and (29) in (23), then

T ∝ ln


1

||y||
n
2

− 1
2

exp
(
−

√
2||y||

(σ2+σ2
X)

1
2

)
1

||y||
n
2

− 1
2

exp
(
−

√
2||y||
σ

)


∝ ln

exp
(
−

√
2||y||

(σ2+σ2
X)

1
2

)
exp

(
−

√
2||y||
σ

)
. (31)

Applying ln(a/b) = ln(a)− ln(b), it follows that

T ∝

(
−

√
2

(σ2 + σ2
X)

1
2

+

√
2

σ

)
||y||, (32)

meaning that the resulting test statistic is proportional to ||y||.
Once again, since the proportionality constant is independent
of y, then

T ∝ ||y||
=
√
yTy

=

n∑
i=1

√
y∗i yi

=

n∑
i=1

√
|yi|2
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=

n∑
i=1

|yi|. (33)

The performance of the hypothesis test is not affected
by any proportionality constant assigned to the test statistic
formula, because its decision threshold is changed in the
same proportion. Therefore, it has been assigned the 1/n
proportionality constant to (33) just for convenience herein,

TAVC =
1
n

n∑
i=1

|yi|. (34)

The test statistic from (33) or (34) corresponds to the
absolute value cumulating (AVC) detector, which has been
shown as an optimal detector, according to the Neyman-
Pearson criterion, under the conditions assigned by the signal
model stated in the present appendix.
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