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Abstract—With the increasing number of machine learning
problems that are out of the linear and Gaussian paradigm,
information theoretic learning (ITL) rises as a research field that
proposes a modeling method with a wealthier statistical treatment
of the adaptation criterion. In the first part of this tutorial, we
introduce the main concepts of ITL and a key set of estimators
that enable the implementation of algorithms, in the context of
a wider view independent of the differentiability property.

Index Terms—ITL, information theory, entropy, Rényi.

I. INTRODUCTION

THANKS to the pioneering work of researchers like

Wiener [1] and Kolmogorov [2], adaptive signal process-

ing emerged in the last century as an engineering discipline

based on the notion of machine learning and on extensive

statistical modeling. The development of this new discipline

took place according to two central premises: (i) linearity of

the processing structure and (ii) parameter adaptation based

on second-order statistics, such as covariance, correlation or

the second moment of an error signal.

The choice for linear models is related to factors like

parsimony and mathematical tractability. Moreover, if the

signals of interest obey a Gaussian model, which can be the

case due to intrisic features or to the “Gaussianizing effect”

of the central limit theorem [3], a linear structure can be

statistically optimal (e.g. according to a maximum likelihood

formulation) [4]. However, the extraordinary development of

computer technology and an increasing demand for high-

performance information processing has been responsible for

popularizing the use of machine learning methods, including

adaptive nonlinear models — like neural networks and fuzzy

systems. In addition to that, the consolidation of unsupervised

filtering theory has broadened the statistical range of adapta-

tion criteria with the adoption, for instance, of higher-order

statistics.
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Fig. 1. The general information filtering problem.

These two trends — the use of more powerful signal pro-

cessing structures and of more extensive statistical information

regarding the underlying data — are, in a certain sense,

combined and even harmonized under the aegis of the notion

of information theoretic learning (ITL). ITL criteria and algo-

rithms share an essential feature: they are based on statistical

entities derived from information theory (IT) [5], like entropy

and mutual information. The relevance of these entities can

be justified in terms of their probabilistic structure, which, in

principle, allows a more thorough statistical characterization

than that provided by second- or even specific higher-order

moments. This broader statistical perspective is what explains

the close association between ITL and nonlinear / nongaussian

scenarios.

Although the origins of the discipline of ITL can be traced

to several key branches of the fields of adaptive filtering and

machine learning, it is beyond any doubt that the efforts of

the group led by Prof. José Principe were instrumental in

providing it with a unified conceptual / theoretical basis and

with an important and versatile framework based on Rényi’s

entropy [6]. Presently, it can be safely stated that ITL is well

established in the context of information processing theory,

being the knowledge of its main formulations and algorithms

essential to all researchers working in this field.

In the big picture, ITL algorithms tackle problems which

one can often see as a generic filtering task, as depicted in

Figure 1. Three aspects, in this context, should be considered:

(i) the criterion to use, (ii) the definition of a filtering model

and its free parameters, and (iii) the strategy to adapt the

parameters according to the criterion.

This work focuses on aspects (i) and (ii), by discussing

important information-theoretic estimators that enable the sub-

sequent derivation of ITL criteria and by illustrating prob-

lems where a formulation consisting of a linear / nonlin-

ear model adapted by an ITL criterion is a possible (and
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mostly interesting) solution. As the reader shall see, the

estimators and, consequently, the criteria set do not necessar-

ily engender differentiable cost functions (which, according

to [7], is recommended). Hence, the decision concerning the

aforementioned aspect (iii) can be made within an extended

scope, beyond gradient-based search strategies and including,

for example, use of bio-inspired meta-heuristics (e.g. genetic

algorithms [8], artificial immune systems [9]). Furthermore,

the non-obligation of differentiability makes the choice of a

proper IT-based criterion for the problem more flexible.

This tutorial was conceived with exactly this motivation

in mind. It is structured in two parts: the first presents the

foundations of ITL — information theory, Rényi’s entropy

and statistical estimation; the second part focuses on ITL

methods and applications, giving the reader an overview of

representative formulations and practical scenarios. This first

part is organized as follows: Section II presents elements of

information theory; Section III discusses Rényi’s proposal,

which extends the mathematical treatment of the concepts

brought forward by Shannon; Section IV discusses some of the

essential estimators employed in ITL criteria and Section V

brings the conclusions and final remarks.

II. INFORMATION THEORY

The last century saw a revolutionary development in the

technologies of data transmission, storage and processing. This

process has given rise to a number of disciplines that have been

unified under the aegis of the concept of information [10].

In spite of important contributions like [11], [12] and [13],

it is generally accepted that the research field referred to as

information theory took a definite shape in a work authored

by one of the most remarkable scientific figures of the 20th

century: Claude Elwood Shannon. The work’s title indicates

the vastness of its scope — “A Mathematical Theory of

Communication” [14] — and, nonetheless, after the final page,

the reader cannot but have the impression that the text has been

up to the highest expectations.

A. Discrete sources

Shannon’s work deals with information sources of discrete

and continuous natures, and also establishes divisions between

transmission processes with and without noise. In its first part,

which is devoted to the analysis of the discrete and noiseless

case, Shannon presents a fundamental quantity H :

H(X) = −K
∑

x∈X

pX(x) log pX(x), (1)

where pX(x) is the probability mass function (PMF) of the

random variable (RV) X .

After indicating that K can be set to unity without loss

of generality, Shannon mentions that quantities of the form

shown in (1) are relevant as “measures of information, choice

and uncertainty” [14]. A connection with statistical mechanics

is duly established and H(·) is termed entropy. There is a

story, mentioned in [15], that Shannon’s choice was the result

of John von Neumann’s advice, who supposedly said that the

use of the term “entropy” would give him “...a great edge in

debates, because no one knows what entropy really is.”

The proposed expression for H is justified in terms of

some properties that a definition of entropy should have,

like continuity over probability values and monotonic increase

with respect to the number of possible events in the uniform

case [14]. Afterwards, some important properties of H are

given, some of which are useful to our future discussions:

1) H = 0 if and only if there is a single event with non

zero (i.e. unit) probability.

2) Given a number of possible outcomes n, the entropy

is maximal if all probabilities are set to 1/n. This

means that the most entropic case arises from a uniform

distribution — uncertainty is maximal.

3) The joint entropy of two RVs, X and Y , is defined as1:

H(X,Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y) (2)

This definition gives rise to an important inequality:

H(X,Y ) ≤ H(X) +H(Y ) (3)

being equality possible only when X and Y are statisti-

cally independent, i.e., when:

p(x, y) = p(x)p(y). (4)

The inequality in (3) is also intuitive: whenever there

is a certain degree of dependence between variables, the

uncertainty associated with their joint knowledge will be

smaller than the sum of the uncertainties associated with

them in separate. When the variables are independent,

considering one of them is useless to reduce the amount

of uncertainty associated with the other, equality holds.

4) If one defines the entropy of a conditional distribution

as a conditional entropy of the form:

H(Y |X) = −
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log p(y|x) (5)

it can be shown that:

H(X,Y ) = H(X) +H(Y |X) (6)

This means that the joint uncertainty of X and Y can

be understood as the amount of uncertainty associated

with X plus the amount of uncertainty associated with

Y when X is known. Notice that (6) can also be written

in terms of H(Y ) and H(X |Y ).
5) From (3) and (6), it is possible to obtain the following

expression:

H(Y ) ≥ H(Y |X) (7)

This expression reveals that the uncertainty associated

with a random variable is never increased by knowledge

of another random variable. The limit case — that of

independence — accounts for potential equality.

1In order to simplify the notation, we shall henceforth omit the subscript
of the RV associated with the PMF.
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After defining the powerful concept widely known as that of

typical sequence2, Shannon proves a theorem that establishes

the entropy of the source as a limit to the achievable efficiency

of any coding process (notice that, in this noiseless case, the

underlying idea is that of lossless compression).

In the following, the case of discrete channels in the

presence of noise is dealt with. The idea is to analyze

the possibility of reliable data transmission even when it is

known that there is always a chance of equivocation in the

reconstruction process performed at the receiver. Naturally,

“raw data” transmission is ruled out — some sort of coding

is the only hope, but to determine the extent of what can be

achieved is a far from trivial task.

Shannon, with his lucid and light style, argues that, for a

noisy channel, the “rate of actual transmission” [14] is given

by H(X)−H(X |Y ) — being X related to the transmitter and

Y to what is received. This quantity is what we call mutual

information (MI), and we will use in its definition the notation

that will be adopted throughout this work:

I(X ;Y ) = H(X)−H(X |Y ). (8)

His line of reasoning is direct: H(X) represents the entropy

of the source and H(X |Y ) is a measure of equivocation i.e. of

the average ambiguity of the received signal. Notice that (8)

can be rewritten in two forms:

I(X ;Y ) = H(Y )−H(Y |X), (9)

and

I(X ;Y ) = H(X) +H(Y )−H(X,Y ). (10)

Shannon provides the reader with nice interpretations of

both expressions in the context at hand. Expression (9) indi-

cates the amount of received information minus that which is

due to noise, and (10) is “the sum of the two amounts less

the joint entropy and therefore in a sense is the number of

bits per second common to the two.” [14]. Also, if one writes

I(X ;Y ) in terms of probabilities, it is possible to obtain the

relation between the Kullback-Leibler divergence

DKL(p; q) =
∑

u

p(u) log
p(u)

q(u)
, (11)

where p and q are two PMFs, and the mutual information:

I(X ;Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

= DKL(p(x, y); p(x)p(y)). (12)

He then proceeds to prove an astounding result: if a value

C called channel capacity is not exceeded by the rate of

information production at the source, there is a coding system

capable of giving rise to an arbitrarily small error rate. Thus,

a noisy channel can be used to send information with an

arbitrarily small reconstruction error with a rate that does

not have to tend towards zero, but can actually be set to a

2It is important to mention the idea of asymptotic equipartition, the basis
for defining “typical”. If X1,X2, ...,Xn are independent and identically dis-
tributed, with PMF p(·), it is possible to show that the following relationship
is, in probability, valid: −1/n log p(x1, ..., xn) → H(X). In [5], this is
illustrated by the sentence “almost all events are almost equally surprising”.

finite bounded value. We will not discuss in detail the elegant

method used to prove this result, but it is important to remark

that the capacity of a given channel is defined in terms of the

maximization of the mutual information between the variables

associated with the transmitter and the receiver:

C = max
p(x)

I(X ;Y ). (13)

This maximization is performed with respect to the source

probability structure.

B. Continuous sources

In the sequence, the case of continuous sources becomes

the focus of the work. A first aspect that will be of paramount

importance here is the extension of the definition of entropy

to the case of a continuous random variable with probability

density function (PDF)3 f(x):

h(X) = −

∫

f(x) log f(x)dx. (14)

This is an intuitive choice that preserves many of the prop-

erties valid for the discrete case, but there are also important

differences. A relevant aspect pointed out by Shannon is that,

in contrast with the discrete case, in which entropy corresponds

to an absolute uncertainty measure, in the continuous case, the

definition leads, in general, to different results for different

coordinate systems. However, the difference between entropies

is not affected by this potential modification, which means that

quantities like channel capacity will be immune to it [14]. The

entropy of a continuous variable, as defined in (14), is also

called differential entropy [5].

Properties (6) and (7) are directly applicable to this case, as

well as the definitions given in (9), (10) and (12), considering

that the differential entropy definition, the integral operator

and probability density functions substitute the discrete-valued

counterparts. Two important properties are also given in Shan-

non’s paper:

1) Under the constraint that a RV is bounded to a finite vol-

ume of the space, the probability density with maximum

entropy is the uniform density.

2) If the second-order moment of a RV is fixed a priori,

the probability density with maximum entropy is the

Gaussian density.

The remainder of Shannon’s paper establishes a number of

key results for continuous sources and channels. Due to this

work, information theory became a research field per se and

a great amount of studies were developed to understand and

consolidate Shannon’s initial contributions. As these results

are beyond the scope of the next sections, we will no longer

follow the thread of his work. Instead, we shall focus on a

generalized measure of information that extended the original

definition in (1) and allowed the development of many ITL

algorithms.

3With the same purpose of simplification, we shall omit the subscript in
f(x).
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III. RÉNYI’S ENTROPY

Alfred Rényi, in the mid 1950s, developed a mathematical

generalization of Shannon’s entropy, usually called Rényi’s α-

entropy. Its definition for the one-dimensional and continuous

case is [16]:

hα(X) =
1

1− α
log

∫

fα(x)dx. (15)

Rényi’s intention was to develop a generalized measure of

information having the additivity property of statistically in-

dependent systems and respecting Kolmogorov’s axioms of

probability. This definition remained practically ignored in the

field of communications, where Shannon’s proposal has been

successfully adopted, possibly due to its direct connections

with information flow in data transmission systems. However,

the application of Rényi’s entropy took place in other areas,

such as coding theory, quantum mechanics, chaotic dynamic

systems and as a measure of diversity in economy [7].

The α parameter of Rényi’s entropy allows several measures

of uncertainty associated with the same distribution. Two

scenarios are worth mentioning: (i) if α → 1, Renyi’s measure

converges to Shannon’s entropy; and (ii) if α = 2, we obtain

the quadratic entropy

h2(X) = − log

∫

f2(x)dx = − logE[f(x)]. (16)

The quadratic entropy plays an important role in ITL

because it engenders a family of estimators that have inter-

esting characteristics (from the machine learning perspective)

such as being non-parametric, continuous and computationally

straightforward. Although it is possible to obtain estimators

for any value of α, the quadratic case, allied to a kernel-based

method for probability density estimation, allows a convenient

evaluation of the integral in (16), which will be shown in

Section IV.

The argument of the log function, E[f(x)], is called infor-

mation potential (IP) — V2(x) — and, in terms of adaptation,

we may consider just the optimization of V2(x), since h2(X)
is a monotonic function and we are only interested in the

extrema of the cost functions. Furthermore, the expression

V2(X) = E[f(x)] carries meaning in itself as the expected

value of the probability distribution, in a context where f(x)
is a transformation of the original random variable.

Rényi also proposed in his studies [6] a generalized diver-

gence measure in probability spaces, the Rényi’s α-divergence:

Dα(f ; g) =
1

α− 1
log

∫

f(x)

(

f(x)

g(x)

)α−1

dx. (17)

Analogously to the entropy, the α-divergence converges to the

Kullback-Leibler divergence when α → 1. Moreover, it is

straightforward to obtain the order α mutual information:

Iα(X ;Y ) =
1

α− 1
log

∫ ∫

fα(x, y)

(f(x)f(y))α−1
dxdy, (18)

where f(x) and f(y) are the marginal densities of X and

Y , respectively. The general case for more than two random

variables is simple to obtain in a manner analogous to that of

Shannon’s mutual information [5].

The α-divergence and the Kullback-Leibler divergence both

present a drawback, which is their asymmetric character. Thus,

they are not strictly distances, but there are other proposals that

fulfill the simmetry requirement, such as the Cauchy-Schwarz

Divergence [17]:

DCS(f ; g) = −
1

2
log

(∫

f(x)g(x)dx
)2

∫

f2(x)dx
∫

g2(x)dx
. (19)

With this distance metric it is possible to obtain an alternative

independence measure, the Cauchy-Schwarz Quadratic Mutual

Information (QMI) [7]. When comparing to classical Shan-

non’s definition or Rényi’s α-order mutual information, the

QMI measure is a different approach that may provide a more

appealing mathematical treatment, in terms of estimation, and

also presents interesting results as a criterion for a series of

ITL algorithms [7].

IV. ESTIMATORS

As presented in the previous sections, all definitions of

information measures proposed by either Shannon or Rényi

require knowledge of the probability mass function, in the

discrete case, or of the probability density function in the

continuous case.

Since, in many practical cases, only data samples whose

probability structure is not known in advance are available,

probability and information-theoretic estimators are required

to implement ITL adaptive algorithms. Initially, the estimators

proposed by Principe et al. [7] are introduced, which raise the

possibility of deriving gradient-based algorithms; afterwards,

we present estimators that are not necessarily differentiable,

as well as two basic estimators for discrete data.

The nonparametric estimators presented in this text are just

a few members of a much larger set, which include relevant

contributions as the entropy estimator based on maximum

entropy distributions [18] and other relevant work that the

reader should refer to [19], [20] for a more profound review

on this particular subject.

A. The Parzen window density estimator as an extreme case

of Gaussian mixture model

The Parzen window method for probability density function

estimation is a kernel based strategy that can be used to

approximate the PDF f(x) of a vector of continuous random

variables X . The problem might be stated as follows: let

X = {x1,x2, ...,xN} be a set of N d-dimensional samples

drawn according to the unknown PDF f(x). We assume that

exists an adequate approximation f̂(x) given by

f̂(x) =

N
∑

k=1

αkφ(x − xk, hk) (20)

where φ(·) is the window function and h is the window width

parameter. Parzen showed that f̂(x) converges to the true

density if φ(·) and h are properly selected [21]. The window

function is required to be a finite-valued non-negative density

function where ∫

φ(y, h)dy = 1, (21)
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and the width parameter must be a function of N such that

lim
N→∞

h(N) = 0, (22)

and

lim
N→∞

Nhd(N) = ∞. (23)

Rectangular and Gaussian window functions are commonly

used. For the latter case, we might rewrite (20) as an extreme

case of a Gaussian mixture model (GMM) [22], whose general

formulation is:

f̂(x|Θ) =

M
∑

k=1

αkG(x|µk,Λk) (24)

where M is typically much smaller than N ,
∑

αk = 1 and

αk ≥ 0. We further denote Θ = {A,U,C} as the mixture

parameter, where A = [α1, ..., αM ], U = [µ1, ...,µM ], C =
[Λ1, ...,ΛM ]) and G(x|µk,Λk) is the k-th Gaussian kernel,

with mean vector µk and covariance matrix Λk:

G(x|µk,Λk) =
1

(2π)
d
2 |Λk|

1
2

e

(

−
(x−µ

k
)TΛ−1

k (x−µ
k
)

2

)

.

(25)

Denoting the likelihood of Θ as L(Θ) = f̂(x|Θ), the problem

consists of finding the optimal parameter vector, Θo, that

maximizes the log-likelihood:

Θo = argmax
Θ

(logL(Θ)). (26)

If the N samples are independent, we may write

logL(Θ) = log

(

N
∏

k=1

f̂(xk|Θ)

)

=

N
∑

k=1

log f̂(xk|Θ) (27)

A well-known and widely used method for solving this prob-

lem is the EM (Expectation-Maximization) algorithm [23].

However, aside from not being the fastest method, this algo-

rithm presents some other issues, such as [24]: (i) potentially

bad convergence, depending on data distribution and initial

parameter choices; (ii) the likelihood-based criterion presents

local maxima that might result in bad models, especially for

small datasets.

As a matter of fact, it is known that the likelihood is not

particularly suited to high-dimension problems, and even to

some low dimensional cases [25]. A solution can be to make

use of regularization methods, which constrain the optimiza-

tion problem to enhance the generalization performance [26].

Although Parzen model is nonparametric, whereas GMM

can be considered a semi-parametric model, as mentioned

before in (24), an interesting point of view for the Parzen

model is that of an extreme case of an intrinsically regularized

Gaussian mixture model [27] where M = N , thus yielding (i)

αk = 1/N (i.e. all Gaussian kernels have the same weight);

(ii) µk = xk, the samples are the Gaussian kernels centers;

and (iii) Λk = σ2I , where I is a d × d identity matrix, in

such way that all kernels are identical and isotropic.

Given such constraints, the single free parameter to be

optimized is σ, the Parzen window width – which can be

optimized through cross-validation, instead of the EM (see

Section 4.3 of [19]) –, and (24) becomes:

f̂(x) =
1

N

N
∑

k=1

G(x|xk , σ
2I). (28)

Alternatively, the value of σ can be directly obtained via an

adaptive kernel density estimator which relies on concepts

from linear diffusion processes [28]. The estimator obtains

(28) as the solution of a partial differential equation, the well-

known Fourier heat equation and, additionally, calculates the

Gaussian kernel bandwidth automatically, without the common

assumption of data normality.

B. Rényi’s entropy estimators

The Parzen window method provides an estimate of the

underlying probability function and, consequently, we can use

it in either Shannon’s or Rényi’s definition of differential

entropy, resulting in entropy estimators commonly known as

plug-in estimators [20].

Shannon’s entropy, nonetheless, still requires a possibly de-

manding evaluation of an integral, while, for Rényi’s entropy,

[7] shows that, in the quadratic case and with Gaussian kernels,

this operator will result in a straightforward expression4.

Consider the unidimensional case: if we rewrite (16) replac-

ing the theoretical PDF with Parzen’s estimator (28), then

ĥ2(X) =− log

∫

f̂2(x)dx

=− log

∫

[

1

N

N
∑

k=1

G(x|xk, σ
2)

]2

dx

=− log
1

N2

∫





N
∑

j=1

N
∑

k=1

G(x|xk, σ
2)G(x|xj , σ

2)



 dx

=− log
1

N2

N
∑

j=1

N
∑

k=1

∫

G(x|xk, σ
2)G(x|xj , σ

2)dx

=− log
1

N2

N
∑

j=1

N
∑

k=1

G(xk|xj , 2σ
2). (29)

Note that the integral of the product of two Gaussians

is exactly a Gaussian evaluated at the difference between

arguments, with a variance equal to the sum of the original

two variance values [7]:
∫

G(x|µ1, σ
2
1)G(x|µ2, σ

2
2)dx = G(µ1|µ2, σ

2
1 + σ2

2). (30)

As already mentioned in Section III, the quadratic entropy

estimator is quite appealing from the perspective of machine

learning because it is non-parametric, continuous and differen-

tiable. Such properties give support to the design of adaptive

algorithms that obtain their solutions based on gradient search

techniques.

4The Gaussian kernel is able to maintain its functional form under con-
volution. Notwithstanding, any other kernel function with peak at the origin
can be equally employed: the resulting kernel function, in this case, is the
convolution of the original kernel with itself [7].
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Analogously to the theoretical expression of quadratic en-

tropy, only the argument of the log function in (29) can be

considered for adaptation purposes, which yields the informa-

tion potential estimator:

V̂2(X) =
1

N2

N
∑

j=1

N
∑

k=1

G(xk|xj , 2σ
2). (31)

When concerning ITL algorithms that employ differentiable

objective functions, the IP estimator is one of the most

important techniques. Expression (31) shows that it depends

on σ — the Parzen window width —, which must be carefully

selected by the user due to direct (and hard to predict)

effects that may provoke on the shape of optimization surface.

Besides the aforementioned method based on linear diffusion

processes [28], the use of cross-validation routines [4] is a

pragmatic and well studied strategy (see Section 5.2 of [19]),

in this case, to select a kernel bandwidth in accordance to the

data range and problem characteristics.

The aforementioned plug-in approach can be repeated for

any value of α, obtaining a generalized version of Rényi’s

entropy estimator, with the caveat that the integral is no

longer exactly evaluated and the corresponding expectation is

replaced by a sample mean estimation [7].

To develop estimators for the mutual information and diver-

gence measures presented in Section III, the same procedure

of adopting Parzen window with Gaussian kernels leads to

expressions that are defined in terms of the IP quantity. For

example, the Cauchy-Schwarz divergence estimator is

D̂CS(f ; g) = log
V̂f V̂g

V̂ 2
c

, (32)

where V̂f and V̂g are the IPs with respect to the underlying

PDFs f(x) and g(x), respectively, and V̂c is the cross-

information potential, given by

V̂c =
1

NfNg

Ng
∑

j=1

Nf
∑

k=1

G(xfk |xgj , 2σ
2), (33)

where Nf and Ng are the total number of samples associated

with distributions f(x) and g(x), respectively.

C. Entropy estimators based on order statistics

In this section we return our focus to Shannon’s differential

entropy, presented in (14), which can be alternatively rewritten

in terms of the quantile function of X , denoted as Q(u), as

shown, for instance, by Pham [29]. In fact, since the quantile

function is defined as the inverse function of the cumulative

distribution function of X , F (x), it follows that

f(x) =
dF (x)

dx
=

1

Q′(F (x))
. (34)

Therefore, after replacing (34) into the logarithm term in (14),

we obtain

h(X) =

∫

f(x) logQ′(F (x)) dx. (35)

Finally, if one considers the change of variables du = f(x)dx,

then (35) can be written as follows

h(X) =

∫ 1

0

logQ′(u) du. (36)

According to expression (36), a possible way to estimate

entropy can be based on a two-step procedure consisting of

(i) estimating the quantile function of X , and (ii) replacing the

obtained estimate into (36). The key point here is that good

approximations of the quantile function can be obtained by a

straightforward approach based on order statistics [29], [30].

Indeed, given a set of N samples, it can be shown that [30]

Q

(

i

N + 1

)

≈ x(i:N), i = 1, . . . , N, (37)

where x(i:N) corresponds to a sample of the i-th order statis-

tics, so that:

x(1:N) ≤ x(2:N) ≤ . . . x(N :N).

In other words, the quantile function can be estimated by

simply sorting these realizations. Then, after some calculation

considering (36) and (37), the following entropy estimator can

be obtained

ĥ(X) =

L
∑

l=2

log

(

x(cl:N) − x(cl−1:N)

ul − ul−1

)

ul − ul−1

uL − u1
, (38)

where

cl =

⌈

Nul
uL

⌉

. (39)

This approximation is necessary because a given ul within

the integration grid will not necessarily satisfy the condition

i/(N+1). In this case, Q(ul) is approximated by Q(cl/(N+
1)), which, in turn, can be approximated by x(cl:N) according

to (37).

If, on the one hand, the estimator in (38) provides a simpler

solution in terms of computational complexity, on the other

hand, it requires a significant number of samples to achieve

a good performance. To illustrate this point, let us consider

the problem of estimating the differential entropy of a random

variable uniformly distributed in [0, 1]. In Figure 2, we show

the histograms of the estimated entropies obtained by (38)

after 5000 executions for the cases of 500 and 5000 samples.

Bearing in mind that the theoretical value of the entropy in this

is case is 0, one can note a great amount of bias in the case

where 500 samples are considered. Moreover, the variance of

the estimator in that case is high. Finally, another limitation

of order-statistics-based estimators is that they can only be

applied in the case of 1-D random variables.

D. K-nearest neighbor and graph-based entropy estimation

In consonance with (14), differential entropy can also be

defined in terms of the following statistic:

h(X) = −E[log f(x)]. (40)
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(b) N = 5000 samples

Fig. 2. Entropy estimation through (38).

Therefore, if a estimator for log f(x), denoted as log f(xi)
is available, then the entropy can be estimated through the

following average

ĥ(X) = −
1

N

N
∑

i=1

log f(xi). (41)

This approximation is the basis of different approaches for

estimating entropy, such as histogram-based methods, which

are discussed in Section IV-E, and k-nearest neighbor (k-NN)

based methods, which are briefly described in this section.

Let x1, . . . ,xN denote N outcomes of a random variable

X of dimension d. It is possible to define a RV ǫ associated

with the distance, e.g. the Euclidean distance, between xi and

its k-nearest neighbor. As shown, for instance, in [31], ǫ can

be used to approximate log f(xi) in the following manner

log f(xi) ≈ ψ(k)− ψ(N)− log(cd)− dE[log(ǫ)], (42)

where ψ(·) is the digamma function and cd is the volume of a

unit sphere in dimension d. By using this expression in (41),

the following estimator can be derived:

ĥ(X) = −ψ(k) + ψ(N) + log(cd) +
d

N

N
∑

i=1

log ǫi. (43)

The first three terms in this estimator have constant values,

while the last one requires the calculation of the distance of

xi to its k-nearest neighbor.

An interesting feature of k-nearest neighbor-based entropy

estimators is that they can be applied regardless of the di-

mension of data. In [31], for instance, the authors proposed

a method to estimate mutual information between random

variables based on this conceptual framework.

In [32] the k-NN strategy is revisited in the context of

a graph-based approach. Basically, a directed graph is built

connecting all samples of a certain distribution to a given

set of nearest neighbors. The sum of the p-th powers of

the Euclidean lengths of its edges is then calculated, and,

using this distance, it is possible to estimate Rényi’s α-

entropy using a straightforward formula that requires also

the estimation of a constant value derived from the structure

of a graph engendered by a uniform distribution. Using the

notion of invariance of mutual information to rescaling and

the so-called copula transformation, the obtained results can

be adapted to the estimation of the related mutual information.

Theoretical analyses regarding the consistency of the estimator

and simulation results reveal the usefulness of the method.

Finally, it is worth mentioning that methods based on

minimum spanning graphs [33] can be employed to estimate

both Rényi’s α-entropy and divergence. These methods are

also based on the sum of a power of the Euclidean distances

of the edges of a minimal graph, and are, in contrast with plug-

in methods, faster in terms of convergence and economical in

terms of a priori choice and fine tuning of parameters.

E. Histogram-based estimators for mutual information

A histogram is a straightforward but coarse PDF estimator,

whose main attractiveness lies in its simplicity of implementa-

tion and use. As an illustration for the use of histograms in MI

estimation, we adapt the very illustrative example presented

in [34], where a collection of N simultaneous measurements

of two continuous variables, X and Y , are considered. First,

a 2-D histogram is used, with Mx × My bins, each bin

corresponding to a rectangular area, ai,j , with center at (ci, cj),
(i = 1, 2, ...,Mx and j = 1, 2, ...,My). Being ki,j the number

of measurements that lie within ai,j , the probability of a

random measurement (X,Y ) falling onto ai,j is estimated as

being:

P [(X,Y ) ∈ ai,j ] ≈ fi,j =
ki,j
N

and the naive mutual information estimator is:

ÎN (X ;Y ) = −

Mx
∑

i=1

fi log fi −

My
∑

j=1

fj log fj

+

Mx
∑

i=1

My
∑

j=1

fi,j log fi,j (44)

where fi =
∑My

j=1 fi,j and fj =
∑Mx

i=1 fi,j .

To illustrate this naive estimator with a simple experiment,

Figure 3 presents a plot of N = 300 independent and

uniformly distributed points (xn, yn) : xn, yn ∈ [0, 1], along

with a regular grid of bins, with Mx = My = 10. The

figure also shows a histogram of 500 independent instances
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of ÎN (X ;Y ), where a clear estimator bias is noticed, since

the true value of the mutual information I(X ;Y ) is zero.

Indeed, through this naive method based on histograms

and relative frequencies, mutual information is systematically

overestimated. For the illustration corresponding to Figure 3,

ÎN (X ;Y ) ≈ 0.15±0.02, instead of the true value I(X ;Y ) =
0. This bias is due to all terms log(fi), in (44), because, though

relative frequency is an unbiased maximum likelihood proba-

bility estimator, the logarithmic (nonlinear) transformation of

it produces a bias.

To reduce this effect, Miller [35] proposed a popular

O(1/N) compensation rule

E[Ĥ(X)] ≈ H(X)−
Mx − 1

2N
. (45)

Moreover, in order to extend the estimation up to O(1/N2)
corrections, Harris [36] proposed

E[Ĥ(X)] ≈ H(X) −
Mx − 1

2N
+

(

1−
∑Mx

i=1
1
fi

)

12N2
. (46)

More recently, Paninski [37] applied Bernstein approximating

polynomials to obtain corrections of order greater than or equal

to two. Further details can be found in [38].

One interesting alternative for MI estimation with his-

tograms is due to Darbellay and Vajda [39], who proposed

an adaptive partitioning of the observation space to keep

bins symmetrically balanced, thus reducing the bias. Dar-

berllay’s method is closely related to a rarely cited method

proposed by M. P. Gessaman, in 1970, for nonparametric

density estimation based on statistically equivalent blocks,

cited and briefly explained in Section 5.2 of [19]. The

authors of [39] empirically concluded that “the nonparametric

estimator appears to be asymptotically unbiased and efficient.”

The method explanation presented in [39] is too long to be

reproduced here, so we just illustrate it, step-by-step, through

one of the experiments presented in Section III - Table I of

the original paper, with an alleviated notation.

We start by considering N = 500 pairs (xi, yi), i =
1, 2, ..., N , independently drawn from a Gaussian source,

Fig. 3. Biased MI estimated from 300 uniform 2D data points and regular
histogram — crosses represent bin centers whereas dots represent data points.

with null mean vector and covariance matrix given by R =
[

1 r
r 1

]

. The mutual information between the corresponding

variables X and Y , in this case, is analytically given by

IGauss(X ;Y ) = −
1

2
log(1 − r2).

Figure 4 illustrates 500 pairwise instances of these variables

with r = 0.3.

The method starts by independently splitting X-data and Y-

data by their respective middles, thus yielding 2 subgroups of

250 points in each subspace. The cartesian product of these

subsets are represented in Figure 4 as A, B, C and D, which

corresponds to a first level partitioning of the whole set, or a

first coarse quantization grid. If X and Y were independent,

we would expect 125 points in each subset. Instead, in one

random experiment with r = 0.3, we found 151, 99, 99 and

151 points in subsets A, B, C and D, respectively.

This deviation between expected and observed number of

points per subset is a clear evidence of non-independence, and

at least one subset must be split again into smaller sub-subsets.

This subdivision is applied only to subsets which yield, in

turn, unbalanced sub-subsets (i.e. if it is measured a minimal

amount of conditional dependence inside the sub-subsets). In

the illustration, it happens to subsets B and C, thus yielding

sub-subsets B1, B2, B3, B4 and C1,C2, C3, C4.

Now, to simplify explanation, we arbitrarily define two

measures associated with a given subset S, as illustrated in

Figure 4, namely: the actual probability of randomly selecting

a point from S, P (S) = n(S)
N

, and the idealized probability

P0(S) =
1
4

L
, where n(S) stands for the number of points in

Fig. 4. N = 500 pairwise instances of two dependent gaussian random
variables, X versus Y , with mutual information given by Igauss(X; Y ) =
0.0472 (i.e. r = 0.3).
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S and L is the partitioning level where subset S is found (see

Figure 4).

For instance, if we have

n(A) = n(D) = 93, n(B) = n(C) = 157

at the first partition level, and

n(B1) = 32, n(B2) = 46, n(B3) = 47, n(B4) = 32
n(C1) = 46, n(C2) = 33, n(C3) = 32, n(C4) = 46

at the second partition level, then

IA =
93

500
log

(

93/500

1/4

)

, ..., IC4 =
46

500
log

(

46/500

1/16

)

and

Î = IA + ID + IB1 + ...+ IC4 = 0.0432.

In comparison with the true mutual information value, which

is 0.0472, this estimate can be considered pretty good.

Unfortunately, this method is very sensitive to the parti-

tioning (grid-refining) process. Being aware of it, the authors

of [39] propose the use of a stopping criterion more accurate

than just testing how close to zero the estimated MI in new

subpartitions are. This alternative criterion is based on the Chi-

square test of independence, in which they use significance

levels (which depend on the number of points inside the tested

subpartition) instead of static thresholds.

Moreover, being the chain rule of probability the main

theoretical support to this approach, it can be easily adapted

to other MI estimation methods based on space discretization.

For instance, one may use the conventional k-means algorithm,

with small values of k, and to keep refining (re-quantizing)

clusters upon a test for measuring independence inside it.

The same idea may also be adapted to space quantization

through kernel methods, such as the Parzen method. Roughly

speaking, the idea presented in [39] paves the way for the

use of irregular self-adapted grids (space partition) in any

histogram-like method.

F. Discrete estimators

The previous sections introduced some important strategies,

both from the standpoint of Rényi’s and Shannon’s definitions,

to estimate information measures for continuous signals. Since

this work has a broader scope in terms of data characteristics

for developing ITL criteria, in the following, the subject is

changed to the case of discrete signals.

1) Histogram with plug-in estimator: Similarly to the con-

tinuous case, the most direct and simple approach to estimate

the PMF of discrete data is based on the histogram of the

samples, with the benefit that it is not necessary to employ

a discretization process. Consider a set of N independent

and identically distributed (iid) observations; the mathematical

formulation of the estimator is

p̂(x) =
1

N

N
∑

i=1

1x(xi), (47)

where 1x(·) is the indicator function

1x(xi) =

{

1 if xi = x
0 otherwise

, (48)

and xi is an observation. Thus, one can plug this estimator

directly into the definition (1) of entropy and the definition (10)

of mutual information for discrete random variables.

However, this procedure results in a biased estimator; hence

there are other proposals to estimate entropy and mutual

information of discrete data that attempts do circumvent this

issue. As mentioned in Section IV-E, Miller [35] proposed

a first-order correction to the estimator and Paninski [37]

developed a thorough theoretical analysis of three common

entropy estimators (including the previous definition) in the

sense of the bias and variance, which also resulted in the

presentation of a new estimator that possesses a rigorous

bound on the maximum error over all possible distributions.

2) Lempel-Ziv complexity-based estimators: Most algo-

rithms for entropy and mutual information estimation focus

on random variables instead of stochastic processes. This is

partially justified whenever a process is formed by iid variables

through time. More precisely, let {X(n)} and {Y (n)} be

two discrete-time random processes, where n ∈ Z stands

for the discrete-time counter. By defining H({X(n)}) and

H({Y (n)}) as the entropy rate (or information rate, in bits per

symbol) of {X(n)} and {Y (n)}, respectively, and by defining

H({X(n)}, {Y (n)}) as their joint entropy rate, we also define

I({X(n)}; {Y (n)}) = H({X(n)}+H({Y (n)})

−H({X(n)}, {Y (n)}) (49)

as the MI between the processes {X(n)} and {Y (n)}, i.e.,

a generalization of MI between random variables (see [5] for

more information).

Clearly, if {X(n)} is iid, then every random variable in

it, X(n), ∀n ∈ Z is associated to the very same amount of

entropy HX = H(X(n)), in bits. Consequently, the entropy

rate of the iid process, H({X(n)}), in bits per symbol, is

numerically equal to HX , and all usual methods for entropy

and MI estimation for random variables are sufficient as tools.

By contrast, if a process is stationary [5] but not indepen-

dent, then H({X(n)}) < HX , and its entropy rate per symbol

is given by:

H({X(n)}) = lim
N→∞

−1

N

KN

∑

i=1

pi log2(pi) (50)

where K stands for the number of possible states / symbols

X may assume, and pi stands for the joint probability of

(X(n), X(n+1), ..., X(n+N− 1)) being equal to the i− th
sequence of states (out of KN possible sequences).

The main drawback of the so called plug-in estimator

suggested by (50) (with pi replaced with relative frequencies,

p̂i) is the huge amount of stationary data it demands, because

the number of possible sequences, KN , exponentially grows

with the sequence length N .

Some alternatives to cope with it have appeared in literature.

In the following, we briefly explain one of the most powerful

of them, based on a complexity analysis of finite sequences

(instead of the entropy of sources), proposed by Lempel

and Ziv [40]. An important aspect of their approach is the

lack of a priori information regarding the symbol source,

which clearly contrasts with the measurement of (source)
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Shannon entropy. In spite of these differences, it was shown

that [5], under ergodicity conditions, Lempel-Ziv’s complexity

of increasingly long symbol sequences converges almost surely

to the Shannon entropy of the source from which the symbols

are drawn.

Lempel-Ziv’s (LZ) approach, later simplified for practical

reasons, became widely known as the compression algorithm

behind many computer programs for file compression — the

“zip-like” programs. We should probably credit its success to

its universality, in other words, to its lack of demand for a

priori information. Nevertheless, it should be also highlighted

that zip-like programs are just the “tip of the iceberg”, for

compression is just a single offspring of the elegant theory

presented in [40].

Definition 1: Complexity Measure. Let xN1 represent a

sequence (e.g. a single instance of a random process), and

let a Minimal Length Block (MLB) be a subsequence xji of

xN1 (1 ≤ i, j ≤ N ) such that it does not occur in xj−1
1 . Then,

there is a unique decomposition of xN1 into MLB, and the total

number of these blocks, p, is the complexity measure of the

sequence, denoted as:

C(xN1 ) = p

Illustration (from [40]): In this illustration, a sequence of

N = 16 binary (K = 2) symbols is parsed as:

x161 = 0001101001000101

↓ parsing

0 · 001 · 10 · 100 · 1000 · 101

Note that the last block may produce an exception to the

parsing rule, since it may be not unique (i.e. not an MLB), as

in this illustration. As a result, we have that the complexity of

this specific sequence is

C(x161 ) = 6.

By comparing the complexity C(xN1 ) to the maximum

expected complexity of a hypothetical sequence of same

length, which is given by N
logK N

, we obtain the normalized

complexity of the sequence, denoted by:

c(xN1 ) =
C(xN1 )

N/logKN
, (51)

which almost surely [5] converges to the entropy rate given

by (50), i.e. the entropy rate of the stochastic process of which

xN1 is likely to be an instance.

In order to illustrate the use of the Lempel-Ziv approach

for entropy rate estimation, we reproduce here the experiment

presented in [41], where a Markov Chain (whose true entropy

rate can be analytically calculated) is used to generate random

sequences of 0s and 1s.

The two-state Markov process (in discrete time) used in this

experiment has a stationary transition matrix given by:

P =

[

1− p10 p01
p10 1− p01

]

where p01 = P [X(n + 1) = 0|X(n) = 1] and p10 =
P [X(n + 1) = 1|X(n) = 0] are transition probabilities. It

can be demonstrated [5] that these two parameters, p01 and

p10 , completely determine the entropy rate of the finite-length

process {X(n)}, n = 1, 2, ..., N :

H =
−p01(p10 log2 p10 + (1− p10) log2(1− p10))

p01 + p10
−p10(p01 log2 p01 + (1− p01) log2(1− p01))

p01 + p10
. (52)

For instance, if p01 = 0.8 and p10 = 0.1, we obtain that the

resulting binary source asymptotically “produces” 0.497 bits

of information per emitted binary symbol.

For all very specific cases where p01+p10 = 1, H({X(n)})
does not depend on N , which makes even the plug-in method

less inaccurate. However, these are rather rare cases of Markov

processes and, in general, the plug-in method is to be avoided,

unless a huge amount of data is available. This is evident if we

keep in mind that this method relies upon relative frequency

of occurrences of symbol sequences. Clearly, the number of

possible sequences exponentially grows with its length, and

so does the amount of necessary data to avoid statistical

undersampling problems.

On the other hand, the astonishingly ‘simple to obtain’

measure presented in (51) provides us with accurate estimates

of H({X(n)}) (although it is aimed at measuring complexity

of specific sequences of symbols). As an illustration, in

Figure 5, we can observe how fast the normalized complexity

measure converges to the true asymptotic information rate

of corresponding processes, by using symbolic sequences of

length up to 4000 symbols.

Finally, if two random processes share some amount of

information, it is also possible to measure it through (49)

— i.e. mutual information estimation through the Lempel-

Ziv approach —, where H({X(n)}, {Y (n)}) can be easily

Fig. 5. Three independent runs of the normalized complexity measure, with
p01 = 0.8 and p10 = 0.1. The entropy rate per symbol estimated through
the plug-in method is presented as well, for an arbitrarily chosen observation
window of N = 10 symbols. In this case, to avoid singularity, we assume
that 0 log(0) = 0.
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computed as the entropy rate of a new “concatenated” process

Z(n) =

[

{X(n)}
{Y (n)}

]

.

V. CONCLUSION

In this work, the first of a two-part tutorial, we presented

elements of the three theoretical pillars of ITL: information

theory, Rényi’s formulations and statistical estimators. The

discussion starts from a historical overview of the development

of information theory, in which essential concepts like entropy,

joint entropy, conditional entropy and mutual information are

defined. In the sequence, these concepts are revisited in the

context of Rényi’s definitions, with emphasis on the quadratic

case. Finally, the associated estimation problems are addressed

in detail, as well as important paradigms like Parzen win-

dowing and order statistics. In the second part of the tutorial,

this theoretical framework will be used in the exposition and

analysis of ITL methods and of their application to a number

of representative information retrieval tasks.
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René Descartes (Paris V), Paris, France. Recently,
she is an associate professor at the Engineering,
Modeling and Applied Social Science Center of the
Federal University of ABC, Santo André, Brasil. Her
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